CETIG SACRE CŒUR DE MOKOLO

Département de mathématiques

Année scolaire 2024/2025

Evaluation No1

Niveau: PA4

Durée: 2h, Coef: 2

Date: 09/10/2025

PARTIE A : Évaluation des ressources : 15pts

Exercice 1: QCM

Pour chacune des questions ci-dessous, écrire le numéro de la question suivi de la lettre correspondante à la réponse juste.

- 1. Un polynôme P défini par $P(x) = ax^2 + bx + c$ est du second degré lorsque :
- b) $a \neq 1$ c) $b \neq 0$ d) a = b
 - 2. Le discriminant Δ du polynôme du second degré $p(x) = ax^2 + bx + c$ est :
- a) $\Delta = b^2 + 4ac$ b) $\Delta = b^2 2ac$ c) $\Delta = b^2 4ac$ d) $\Delta = b^2 ac$.
 - 3. Un polynôme du second degré admet un signe strictement positif ou strictement négatif lorsque :
- c) $\Delta < 0$ d) $\Delta = 0$ a) $\Delta \neq 0$ b) $\Delta > 0$
 - 4. la forme canonique d'un polynôme du second degré $P(x) = ax^2 + bx + c$ est :
- a) $P(x) = a \left[\left(x \frac{b}{2a} \right)^2 \frac{\Delta}{4a^2} \right]$ b) $P(x) = a \left[\left(x \frac{b}{2a} \right)^2 + \frac{\Delta}{4a^2} \right]$ c) $P(x) = a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{\Delta}{4a^2} \right]$
- d) $P(x) = a \left| \left(x + \frac{b}{2a} \right)^2 \frac{\Delta}{4a^2} \right|$
 - 5. la somme S et le produit P des racines d'un polynôme du second degré $p(x) = ax^2 + ax^2$ bx + c est donné par :
- a) $S = \frac{-b}{a}$ et $P = \frac{c}{a}$ b) $S = \frac{b}{a}$ et $P = \frac{-c}{a}$ c) $S = \frac{-b}{a}$ et $P = \frac{-c}{a}$ d) $S = \frac{b}{a}$ et $P = \frac{c}{a}$.

Exercice 2

- I. On considère le polynôme : $H(x) = -2x^2 x + 6$
- 1) Sans les calculer, montrer que H admet deux racines distinctes.

1pt

2) Calculer leur somme S et leur produit P

 $0,75 pt \times 2 = 1,5pt$

3) Calculer H(-2) puis conclure.

1,5pts

4) En déduire l'autre racine de H

1pt

Exercice 3 5pts

- I. On considère le polynôme $P(x) = 2x^2 + x 15$
- 1) Donner la forme canonique du polynôme P(x).

1pt

- 2) En utilisant le discriminant, résoudre dans \mathbb{R} l'équation $2x^2 + x 15 = 0$. 0,75pt
- 3) Dresser le tableau de signe du polynôme P(x) puis en déduire la résolution de l'inéquation $P(x) \leq 0$ 1pt
- II. Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

(a)
$$\frac{2x-1}{x+2} = 0$$
, (b) $\frac{3x+6}{x-1} = 2$; (c) $\frac{x+3}{2x+1} \le 0$; (d) $\frac{2x+4}{x} > 1$

PARTIE A : Évaluation des compétences : 05pts

Arnold a une grande réserve ayant la forme d'un rectangle de périmètre 140m et l'aire $1200m^2$ il souhaite connaitre les dimensions de cette réserve. Cette réserve est subdivise en deux zones : la zone1: il élevé les moutons et la zone 2 il élevé les canards . Pour l'entretien de sa réserve Arnold avait gardé la somme de 30000FCFA qu'il devait partager équitablement à un certain nombre d'employés qu'il avait contacté avant. Le jour prévu pour effectuer les travaux d'entretien il constate qu'il a quatre personnes de moins et la part de chacun se voit alors augmenté de 1250FCFA. Dans cette réserve on compte 104 pattes et 35 têtes

Tâches:

1: Aider Arnold a retrouvé les dimensions de cette réserve.
2: Évaluer le montant reçu par chaque employé.
3: Combien compter d'animaux de chaque espèce dans cette réserve.
1,5pts
1,5pts

Présentation: 0,5pt