MINESEC COLLÈGE SACRE CŒUR **MOKOLO**

Département de mathématiques

Année scolaire: 2025/2026

Évaluation N^01

Classe: Tle D

Durée: 3h30 Coef:4

Date: Octobre 2025

ÉPREUVE DE MATHÉMATIQUES

PARTIE A : ÉVALUATION DES RESSOURCES

15points

Exercice 1:05 points

- 1. Soit z et z' deux nombres complexes tels que z = 1 + i et z' = 2 3i
 - (a) Détermine le conjugué de $\frac{z'}{\bar{z}}$ sous la algébrique.

0,5pt

(b) Détermine le module de $\frac{z}{z^4}$.

0,75pt

2. Résoudre dans C les équations suivantes(On donnera les solutions sous la forme algébrique)

(a) $-\bar{z} + 2iz + 1 = 0$; b) iz - 2 = 3z - i; c) $-i|z|^2 + 2z - 2i = 0$.

1,25pt

3. Résoudre dans \mathbb{C}^2 le système suivant : (S) : $\begin{cases} -z+2iz'=5+2i\\ 2iz-3z'=-2+4i \end{cases}$.

1pt

- 4. On donne les nombres complexes $z_1 = \frac{3-2i}{4+5i}$ et $z_2 = \frac{-3-2i}{4-5i}$.
 - (a) Exprimer z_2 en fonction $\bar{z_1}$.

0,5pt

(b) En déduire sans calculer que z_1-z_2 est un nombre réel et z_1+z_2 est un imaginaire pur.

Exercice 2:05 points

On considère le polynôme P défini par $P(z) = 9z^4 - 24z^3 + 50z^2 - 24z + 41$

1. Démontrer que pour tout nombre complexe z_0 , on a : $P(\bar{z_0}) = \overline{P(z_0)}$.

1pt

2. En déduire que si z_0 est une racine de P, alors $\bar{z_0}$ est aussi une racine de P.

0,5pt

3. Calculer P(i). Que peut-on conclure?

0,5pt

4. En déduire l'autre racine P.

0,25pt

0,75pt

- 5. Déterminer trois nombres complexes a;b et c tel que $P(z) = (z^2 + 1)(az^2 + bz + c)$.
- 6. Résoudre dans \mathbb{C} l'équation P(z) = 0.

1pt

7. Déterminer l'ensemble des points M(x;y) tels que |2z-2+i|=|2iz-3i|

1pt

Exercice 3:05 points

I. Le plan est rapporté à un repère orthonormé direct $(O; \vec{u}; \vec{v})$

On considère l'expression $P(z) = z^3 + (2 - 2i)z^2 + (2 + 4i)z - 12i$

1. Montrer que l'équation P(z) = 0 admet une solution imaginaire pure z_0 que l'on déterminera.

1

2. Déterminer les racines de $\delta = 12 - 16i$.

0,5pt

3. Résoudre dans \mathbb{C} l'équation $z^2 + (2-4i)z - 6 = 0$.

0,5pt

4. Déterminer le polynôme Q de degré 2 tel que $P(z)=(z-z_0)Q(z)$.

0,75pt

5. En-Déduire la résolution dans \mathbb{C} de l'équation P(z) = 0

0,5pt

II. On pose $j = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$.

(a) Donner j^2 et j^3 sous forme algébrique.

0,75pt

(b) En déduire l'écriture algébrique de j^{12} et de j^9 .

0,5pt

(2) Montrer que $1 + j + j^2 = 0$.

0,75pt

PARTIE B: ÉVALUATION DES COMPÉTENCES

05points

Emmanuel possède trois terrains dont il veut absolument clôturer pour leur sécurité. Emmanuel décide d'utiliser du fil barbelé vendu à 3500FCFA le rouleau de 5m. Il souhaite également vendre le deuxième terrain à 1000F le mètre carré. Les terrains sont décrits ainsi, avec z=x+iy: Le premier terrain est délimité par les points M(x,y) du plan tels que $\frac{z-4-6i}{z-2i}$ est un imaginaire pur. Le deuxième terrain est délimité par les points M(x,y) du plan tels que |z-3-i|=5. Le troisième terrain a la forme d'un rectangle dont les dimensions sont les parties réelle et imaginaire de la solution de l'équation $(1+4i)+(3-4i)\,\overline{z}=4-8i$, avec z=x+iy.

Tâches:

- Déterminer le montant à dépenser par Emmanuel pour l'achat du fil barbelé devant permettre de clôturer le premier terrain.

 1,5pt
- 2. Déterminer le prix de vente du deuxième terrain.

1,5pt

3. Déterminer le montant à dépenser par Emmanuel pour l'achat du fil barbelé devant permettre de clôturer le troisième terrain.

1,5pt

2