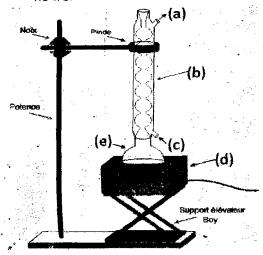
e .	LYCEE BILINGUE DE YAOUNDE							
CLASSE	Tle	SERIE	C et D	EVALUA'	TION 1 : 2025-2026 V	$T A^{v}$		
EPREUVE	CHIMIE PRATIQUE	COEF	0,5	DUREE	1 H			

Partie A: 14 points

Le benzoate de méthyle est un liquide à odeur forte, obtenu par une réaction entre l'acide benzoïque C_6H_5-COOH en le méthanol CH_3-OH en présence d'acide sulfurique.


1. Nommer la réaction qui a lieu entre l'aide benzoïque et le méthanol.

1pt

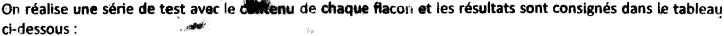
2. Ecrire l'équation-bilan de la réaction entre l'acide benzoïque et le méthanol.

1,5p*

3. Dans un ballon, on introduit 12,2g d'acide benzoïque, 40 ml de méthanol, 3 ml d'acide sulfurique concentré et quelques grains de pierre ponce. On réalise le montage ci-dessous représenté et on chauffe doucement pendant une heure.

- 3.1 Nommer ce dispositif et donner son importance en laboratoire. 1x2pt
- 3.2 Annoter les différentes parties désignées par les lettres.
 - 0,5x5pt
- 3.3 identifie le réactif en excès et l'avantage de mettre un réactif en excès ? 2pt
- 4. Après refroidissement, on verse le contenu dans une ampoule à décanter, contenant 50 mL d'eau distillée froide. On obtient deux phases différentes. Après traitement de la phase contenant l'ester, on récupère une masse m = 10,2 g de benzoate de méthyle, produit de la réaction.
- 4.1 Dessiner l'ampoule à décanter en indiquant la place respective des deux phases et préciser leur contenu. 2pt
- 4.2 Calculer le rendement de cette réaction.

3pt


On donne:

Composés	Masse metaire (g/mel)	Masse volumique à 20°C (g/m!)	Solubilité dans l'eau
Acide benzolque	122	1,3	ved soluble
Méthanol	32	0,8	Soluble
Benzoate de méthyle	136	1,1	insoluble

Partie B: 6 points

On dispose dans un laboratoire de quatre flacons F₁, F₂, F₃ et F₄ contenant des solutions dont on voudrait identifier les contenus, on sait que les solutions contenues peuvent être :

- Un alcool
- -. Un acide carboxylique
- Un aldéhyde
- Une cétone

	Flacon	F	5	. F ₃	F ₄
ı	r ₂ Or ² en milieu cide	Solution orange	Solution verte	Solution verte	Solution orange
E	D.N.P.H.	Solution jaune	Solution jaune	Précipité jaune	Précipité jaune
R	léastif de Schiff	Solution incolore	Solution incolore	Solution violette	Solution incolore
1	iquess se chling	Solution bleue	Solution bleue	Précipité rouge brique	Solution bleue

Attribute à chaque flacon le contenu de sa solution après analyse des résultats consignés dans le tableau cidessus.

1,5x4 = 6pt