COLLEGE PRIVE	MONGO BETIB.P 972 TÉL	.: 242 68 62 97 / 24	2 08 34 69 Y	'AOUNDE	
ANNÉE SCOLAIRE	EVALUATION SOMMATIVE	EPREUVE	CLASSE	DUREE	COEFFICIENT
2021/2022	N°3	Mathématiques	$\perp 7\Delta$	03h00	05
Professeur:	Mr. Take Walker	Jour:		Quant	ité:

BASN-FO 02/10/2025

Noms de l'élève _____ Classe ____ N° Table ____

Date:

	Non Acquise	En cours d'acquisition((AE)	Acquis	Expert	
	(NA)	,	(A)	(E)	
		NOTE FINALE DE L'ELEVE			
Evaluation des ressources		1		Note totale / 20	
Evaluation d	les compétences .	/	•		

Exercice I:

1- Mets chacun des nombres complexes sous forme algébrique.

- a) Z = (1-2i)(1+2i) 1 pt
- b) Z = (1+i)(1-2i) + 1-2i 1 pt
- c) $Z = \frac{1-2i}{1-3i}$ 1 pt
- 2- I/ Résous dans C les équations
 - a) (z+3) = (1+2i)z(1-i). 1,5 pt
 - b) $i\mathbf{z} + 1 + 3i = 7 i$ 1,5 pt

II/ Résous les systèmes

a)
$$\begin{cases} iz + z' = 1 + i \\ z - iz' = 1 - i \end{cases}$$
 1,5 pt b) $\begin{cases} -iz + (2i - 1)z' = i \\ (2 + i)z - iz' = 1 + i \end{cases}$ 1,5 pt

3- On considere l'équation (E)

$$Z + (4-5i)z + (8-20i)z - 40i = 0$$

- 1) Montre que (E) admet une solution imaginaire pure Z/ 1 pt
- 2) Résous dans C l'équation (E). 1,5 pt

Exercice II

- I) Calcule chacune des limites suivantes.
- $a) \quad \lim_{x \to +\infty} \sqrt{x^2 x + \& -x 1} \qquad \underline{1 \text{ pt}}$
- b) $\lim_{\overline{\sqrt{x+1}-1}} \frac{1 \text{ pt}}{\sqrt{x}}$
- c) $\lim \frac{\tan x \sin x}{x^3}$ 1 pt

II/ On donne $f(x) = \sqrt{x^2 - x^2 + 5}$

1- Donne la forme canonique de $x^2 - 4x + 5$

2- Calcule les limites en $+\infty$ - ∞ de la fonction h définie par $h(x) = f(x) - \sqrt{(x-2)^2}$

3- Donne Df

4- Calcule f'(x) et étudie son signe.

1,5 pt

Exercice III

On donne f(x) = -¹/₂ + ^x/_{2√1+x²}
 Calcule les limites aux bornes de Df.

0,5 pt

3) Montre que f réalise une bijection de Rvers] -1;0[1 pt

Présentation 0,5 pt