Ministère des Enseignements Secondaires GROUPE « LES COMPETENTS »

Sis à NGOUSSO ELEVEUR derrière le collège ST AUGUSTIN

Tél: 676 273 940 / 680 374 314 / 675 421 947

Année Scolaire 2021-2022

Epreuve : Mathématiques

Examinateur : Serge TCHIO

TRAVAUX DIRIGES N°5 : CLASSE DE T^{le} C, D & TI FONCTION STRICTEMENT CONTINUES

EXERCICE 1:

- **A.** On considère la fonction g définie sur \mathbb{R} par $g(x) = x^3 + 12x 2$
 - 1. Etudier les variations de g et dresser son tableau de variation
 - **2.** Montrer que l'équation g(x) = 0 admet une unique solution α telle que $0 < \alpha < 1$
 - 3. Donner un encadrement d'ordre 2 de α
 - **4.** En déduire le signe de g(x) suivant les valeurs de x
- **B.** On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{x^3+1}{x^2+4}$
 - **1.** Montrer que $f(\alpha) = \frac{3-12\alpha}{\alpha^2+4}$
 - **2.** Calculer f'(x) et montrer que $f'(x) = \frac{x \times g(x)}{(x^2+4)^2}$
 - 3. Déduire le sens de variation de f et dresser le tableau de variation de f

EXERCICE 2:

- **A.** On considère la fonction f définie par $f(x) = \frac{1}{x-1} \sqrt{x}$
 - **1.** Etudier les variations de f et dresser son tableau de variation
 - **2.** Montrer que l'équation f(x) = 0 admet une unique solution $\beta \in]1,2[$
- **B.** Soit g la fonction définie sur]1, $+\infty$ [par $g(x) = 1 + \frac{1}{\sqrt{x}}$
 - **1.** Montrer que l'équation g(x) = x est équivalente à l'équation f(x) = 0
 - **2.** Montrer que si $x \in [1, 2[$ alors $g(x) \in [1, 2[$
 - **3.** Justifier que g est dérivable et calculer g'
 - **4.** Montrer pour tout $x \in]1, 2[, |g'(x)| \le \frac{1}{2}$ puis déduire que $|g(x) \beta| \le \frac{1}{2}|x \beta|$

EXERCICE 3:

Soit f la fonction définie sur $I =]-2, +\infty[$ par $f(x) = \frac{1}{x+2} - \sqrt{x+3}$

- **1.** Dresser le tableau de variation de f sur I
- **2.** Montrer que f réalise une bijection de I vers un intervalle J à préciser.
- **3.** Montrer que l'équation f(x) = 0 admet une unique solution $\alpha \in]-2, -1[$
- **4.** Calculer f(1) et déduire $(f^{-1})'\left(-\frac{5}{3}\right)$
- **5.** On considère la fonction g définie sur [-2, -1] par $g(x) = \frac{1}{\sqrt{x+3}} 2$
 - **a.** Montrer que α est solution de l'équation g(x) = x
 - **b.** Montrer que pour tout $x \in [-2, -1]$, $g(x) \in [-2, -1]$
 - **c.** Montrer que pour tout $x \in [-2, -1]$, $|g'(x)| \le \frac{1}{2}$ puis que $|g(x) \alpha| \le \frac{1}{2}|x \alpha|$

EXERCICE 4:

On donne $g(x) = x\sqrt{x^2 + 1} - 1$

- **1.** Calculer le limites de g en $-\infty$ et $+\infty$
- **2.** Déterminer la dérivée g' de g et dresser le tableau de variation de g
- 3. Montrer qu'il existe un unique α tel que $g(\alpha)=0$ puis que 0,7 < α < 0,8
- **4.** Donner le signe de g(x) suivant les valeurs de x
- **5.** Soit $f(x) = \frac{x^3}{3} \sqrt{x^2 + 1}$

- **a.** Justifier que f est dérivable sur \mathbb{R} et montrer que $f'(x) = \frac{x \times g(x)}{\sqrt{x^2 + 1}}$
- **b.** Dresser le tableau de variation de f sur \mathbb{R}
- **c.** Montrer que $f(\alpha) = \frac{\alpha^4 1}{3\alpha}$ puis que $-0.35 < f(\alpha) < -0.24$

EXERCICE 5

Ecrire simplement:

$$A = \frac{4\sqrt[3]{4} \times 2\sqrt{2}}{\sqrt[6]{2}} \qquad B = 4\sqrt{\sqrt{1024}} - \sqrt[3]{125} + \sqrt{\sqrt{27}} \times \sqrt[4]{3} \qquad C = \frac{\sqrt[15]{3} \times \sqrt[3]{9} \times (\sqrt{9})^2}{\sqrt[3]{27} \times (\sqrt[3]{\sqrt{3}})^2}$$

EXERCICE 6:

Soit f la fonction définie sur [0,1[par $f(x)=\sqrt{\frac{x}{1-x^2}}$ On note (C_f) sa courbe représentative dans un repère orthonormé du plan.

- 1. Etudier la dérivabilité de f à droite de 0 et interpréter graphiquement le résultat obtenu
- **2.** Etudier les variations de h et dresser son tableau variation
- **3.** Tracer la courbe (C_f) dans le repère.
- **4.** Montrer que f réalise une bijection de [0,1[vers un intervalle à préciser.
- **5.** Déterminer explicitement f^{-1}
- **6.** Dresser le tableau de variation de f^{-1} et construire la courbe de f^{-1}

EXERCICE 7:

On considère la fonction f définie sur \mathbb{R} par $f(x) = \sin(2x)$. On note $f^{(n)}$ la dérivée n-ième de f.

- **1.** Calculer pour tout réel x, f'(x), f''(x) et $f^{(3)}(x)$
- **2.** Montrer par récurrence que pour tout réel x et tout $n \in \mathbb{N}^*$, $f^{(n)}(x) = 2^n \sin\left(2x + n\frac{\pi}{2}\right)$

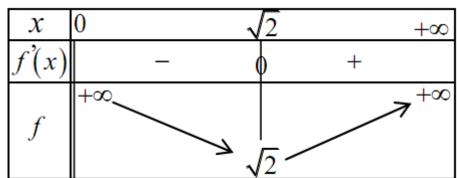
EXERCICE 8:

Dans chacun des cas suivants, déterminer l'image de l'intervalle I par f

a.
$$f(x) = \frac{x+2}{x-3}$$
 $I =]3, +\infty[$ **b.** $f(x) = x^3 - 3x + 1$ $I = [-4, 4]$

EXERCICE 9:

On définit la suite (u_n) par $u_0=2$ et pour tout entier naturel n, $u_n=\frac{1}{u_n}+\frac{u_n}{2}$ On considère la fonction f définie sur \mathbb{R}_+ par $f(x)=\frac{1}{x}+\frac{x}{2}$ Ci-dessous on donne le tableau de variation de f



- **1.** Démontrer par récurrence que pour tout entier naturel $n, u_n \ge \sqrt{2}$
- **2.** Pour entier naturel n, exprimer $u_{n+1} u_n$ en fonction de u_n puis donner le sens de variation de la suite (u_n)
- **3.** Justifier que (u_n) est convergente et déterminer sa limite l.