Ministère des Enseignements Secondaires GROUPE « LES COMPETENTS »

Sis à NGOUSSO ELEVEUR derrière le collège ST AUGUSTIN

Tél: 676 273 940 / 680 374 314 / 675 421 947

Année Scolaire 2021-2022

Epreuve : Mathématiques

Examinateur : Serge TCHIO

TRAVAUX DIRIGES N°4 : CLASSE DE T^{le} C, D & TI NOMBRES COMPLEXES - SUITES NUMERIQUES

EXERCICE 1:

On considère la suite (u_n) définie par $u_0=1$ et pour tout $n\in\mathbb{N}$, $3u_{n+1}=2u_n-\frac{n}{3^n}$

- **1.** Calculer u_1 et u_2
- **2.** Montrer par récurrence que pour tout entier n, $u_n = \frac{n+1}{3^n}$
- **3.** Soit (v_n) la suite définie pour tout $n \in \mathbb{N}$, $v_n = 9u_{n+1} 3u_n$
 - **a.** Montrer que la suite (v_n) est une suite géométrique de raison $\frac{1}{3}$
 - **b.** Exprimer u_n en fonction de n.
 - **c.** On pose $s_n = u_0 + u_1 + u_2 + ... + u_{n-1}$. Montrer par récurrence que $s_n = \frac{9}{4} \frac{2n+3}{4 \times 3^{n-1}}$

EXERCICE 2:

On considère le nombre complexe $w = -\sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}}$

- **1.** Donner l'écriture trigonométrique de w^2 et en déduire l'écriture algébrique de w
- 2. En déduire une écriture trigonométrique de w
- 3. Donner les valeurs exactes de $\cos \frac{7\pi}{8}$ et $\sin \frac{7\pi}{8}$

EXERCICE 3:

Soit l'équation (E): $z^3 - (1+2i)z^2 - 3z + 2i - 1 = 0$

- **1.** Montrer que -1 est solution de l'équation (E).
- **2.** Résoudre dans l'ensemble $\mathbb C$ des nombres complexes l'équation (E)
- **3.** Dans le plan complexe rapporté au repère orthonormé $(0, \vec{u}, \vec{v})$. On considère les points A, B et C d'affixes respectives $z_A = i$, $z_B = 2 + i$ et $z_C = -1$.
 - **a.** Placer les points A, B et C dans le repère.
 - **b.** Donner la forme trigonométrique de $\frac{z_A}{z_A-Z_B}$ puis déduire la nature du triangle ABO.
 - **c.** Calculer l'affixe du point D image du point A par la translation de vecteur \overrightarrow{BC} .
 - d. Calculer l'affixe du point E tel que ABCE soit un parallélogramme
- **4.** Déterminer et construire l'ensemble des points M du plan tels que $\|\overrightarrow{MA} + \overrightarrow{MC}\| = 6$
- **5.** Soit s la transformation du plan dans le plan d'expression analytique $\begin{cases} x' = x y + 2 \\ y' = x + y 1 \end{cases}$
 - **a.** Montrer que l'écriture complexe de s est z' = (1+i)z + 2 i
 - **b.** Donner les éléments caractéristiques de s

EXERCICE 4:

Dans le plan complexe rapporté au repère orthonormé $(0, \vec{u}, \vec{v})$, on donne $z_A = \frac{3}{2} + 6i$,

$$z_B = \frac{3}{2} - 6i$$
, $z_C = -3 - \frac{1}{4}i$, $z_P = 3 + 2i$ et le vecteur \vec{w} d'affixe $z_{\vec{w}} = -1 + \frac{5}{2}i$

- **1.** Déterminer l'affixe z_Q du point Q image du point B par la translation de vecteur \vec{w} .
- **2.** Déterminer l'affixe z_R du point R image du point P par l'homothétie de centre C et de rapport $-\frac{1}{2}$
- 3. Déterminer l'affixe du point S image du point P par la rotation de centre A et d'angle $-\frac{\pi}{2}$
- 4. Placer les points P, Q, R et S et démontrer que PQRS est un parallélogramme.
- **5.** Calculer $\frac{z_R z_Q}{z_P z_Q}$ et déduire la nature exacte de *PQRS*.

EXERCICE 5

- **1.** Déterminer le module et un argument de $u = \frac{8+8i}{\sqrt{3}+i}$
 - 2. Déterminer les racines cinquièmes de u.
 - **3.** Résoudre dans \mathbb{C} , l'équation $z^3 = 4\sqrt{2}(-1+i)$
- **II.** 1. Linéariser $\cos^3 x \times \sin^3 x$
 - **2.** En utilisant d'une part la formule de Moivre et d'autre part le développement usuel de $(a + b)^4$, développer $(\cos x + i \sin x)^4$ puis en déduire les expressions de $\cos 4x$ et $\sin 4x$ en fonction de $\cos x$ et $\sin x$

EXERCICE 6:

Dans le plan complexe rapporté au repère orthonormé $(0, \vec{u}, \vec{v})$, On considère les points A et B d'affixes respectives 1 + 3i et 2i.

- **1.** Soit s la similitude directe plane qui de centre B qui transforme O en A. On note z' l'affixe de M' image du point M d'affixe z par s.
 - **a.** Déterminer l'écriture de z' en fonction de z
 - **b.** En déduire le rapport et l'angle de s.
- **2.** Soit r la transformation du plan dans lui-même telle que z' = iz + 3
 - **a.** Donner la nature exacte de r et donner ses éléments caractéristiques (on notera Ω le centre de r)
 - **b.** Donner la nature du triangle $A\Omega B$.

EXERCICE 7:

- z désigne un nombre complexe. On pose $a = z^2 2\bar{z} + 1$
 - 1. Déterminer l'ensemble des points dont l'affixe z est telle que a soit un nombre réel.
 - **2.** Déterminer l'ensemble des nombres complexes z tels que a=0
 - **3.** Soit A(1), B(-1+2i) et C(-1-2i). Montrer que le triangle ABC est rectangle et isocèle.

EXERCICE 8:

Dans le plan complexe rapporté au repère orthonormé $(0, \vec{u}, \vec{v})$, On considère les points A et B d'affixes respectives $z_A = -\frac{3}{2} + \frac{\sqrt{3}}{2}i$, $z_B = \overline{z_A}$ et $z_C = -3$.

- **1.** Ecrire les complexes z_A , z_B et z_C sous forme exponentielle.
- **2.** Placer les points A, B et C dans le plan
- 3. Montrer que le triangle est équilatéral.
- **4.** Soit f la transformation du plan dans le plan qui à tout point d'affixe z associe le point d'affixe z' tel que $z' = \frac{1}{3}iz^2$ On note O', A', B' et C' les images respectives des points O, A, B et C.
 - **a.** Donner la forme exponentielle des affixes des points A', B' et C'.
 - **b.** Démontrer que les points O, A et B' son alignés.
 - **c.** Soit G l'isobarycentre des points O, A, B et C et G' son image par f. Déterminer les affixes des points G et G'.