COLLEGE BILINGUE CHARLES ET THERESE MBAKOP

Département de Mathématiques

Année scolaire : 2025 - 2026

DH: N° 1 Classe: Tle D Coefficient: 4 Durée: 4 heures

EPREUVE DE MATHEMATIQUES

L'épreuve étalée sur deux pages, est constituée de deux parties A et B indépendantes

PARTIE A : Évaluation des ressources (15 points)

Exercice 1: (5 points)

I- Soit la fonction numérique f définie par $f(x) = \sqrt{x^2 + 1} - \sqrt{x^2 - 1}$.

1- a) Donner l'ensemble de définition de f. (0,5pt)

b) Calculer $\lim_{x \to +\infty} f(x)$. (0,5pt)

2- Soit *g* la fonction définie par $g(x) = (\sqrt{x^2 + 1} + \sqrt{x^2 - 1})sin(\sqrt{x^2 + 1} - \sqrt{x^2 - 1})$

a) Justifier que pour tout $x \in D_f$, $g(x) = 2 \frac{\sin(f(x))}{f(x)}$. (0,75pt)

b) En déduire $\lim_{x\to +\infty} g(x)$. (0,5pt)

II- Soit la fonction k définie sur]-1; 1[par $k(x) = -1 + \frac{x}{\sqrt{1-x^2}}$.

1- Etudier les variations de k et dresser son tableau de variations. (1,25pt)

2- Montrer que l'équation k(x) = x admet unique solution α sur $\left[0, \frac{4}{5}\right]$. (0,5pt)

3- En déduire le signe k(x) - x suivant les valeurs de x. (0,5pt)

4- Montrer que k réalise une bijection réciproque de]-1;1[ver un intervalle J que l'on précisera. **(0,5pt)**

Exercice 2: (5 points)

1- Soit le polynôme $P(Z) = Z^4 - (1 + \sqrt{3})Z^3 + (2 + \sqrt{2})Z^2 - (1 + \sqrt{2})Z + 1$. L'objectif de cette partie est de résoudre l'équation P(Z) = 0.

a) Calculer $(1-\sqrt{2})^2$. (0,25pt)

b) Résoudre dans \mathbb{C} l'équation $Z^2 - (1 + \sqrt{2})Z + \sqrt{2} = 0$. (0,75pt)

c) Montrer que $\forall Z \neq 0$, $\frac{P(Z)}{Z^2} = \left(Z + \frac{1}{Z}\right)^2 - \left(1 + \sqrt{2}\right)\left(Z + \frac{1}{Z}\right) + \sqrt{2} = 0$. **(0,5pt)**

d) En déduire dans \mathbb{C} les solutions de l'équation P(Z)=0. (1pt)

2- On considère l'équation (E): $z^3 - 2(1+2i)z^2 + 7iz + 3(1-3i) = 0$.

Démontrer que (E) admet une solution imaginaire pure que l'on déterminera. (1pt)

3- On considère les nombres complexes $u = -\sqrt{4-2\sqrt{2}} - i\sqrt{4+2\sqrt{2}}$ et v = -12-16i

a) Calculer u^2 . (0,5pt)

b) En déduire le module de u. (0,5pt)

c) Déterminer les racines carrées de v. (0,5pt)

Exercice 3: (5 points)

1- Résoudre dans
$$\mathbb{C}^2$$
 le système (S) :
$$\begin{cases} iz + 2z' = 1 + i \\ z - (2 - i)z' = 1 \end{cases}$$
 (1pt)

2- Dans le plan complexe muni d'un repère orthonormal, soit $M {x \choose y}$ d'affixe z = x + iy.

On pose $Z' = \frac{Z-i}{Z+i}$ avec $Z \neq -i$. (Unité graphique : 1 unité pour 4cm)

a) Démontrer que la forme algébrique de Z' en fonction de x et y est :

$$Z' = \frac{x^2 + y^2 - 1}{x^2 + (y+1)^2} - i\frac{2x}{x^2 + (y+1)^2}$$
 (1pt)

- **b)** Déterminer l'ensemble (Γ) des point M tel que Z' soit un imaginaire pur. (1pt)
- c) Déterminer l'ensemble (D) des point M tel que |Z'| = 1. (1pt)
- **d)** Construire (Γ) et (D) dans le même repère. (1pt)

PARTIE B : Evaluation des compétences (5 points)

Situation:

Trois usines A, B et C fabriquent des machines agricoles. L'usine A peut produire en un mois entre 0 et 40 machines ; L'usine B peut produire en un mois entre 0 et 50 machines ; L'usine C peut produire en un mois entre 40 et 160 machines. On a modélisé le bénéfice de chaque usine A, B et C exprimé en milliers

de francs CFA par les fonctions respectives f, g et h.

Le bénéfice réalisé par l'usine A est modélisé par la fonction f définie pour tout nombre réel $x \in [0; 40]$ par : $f(x) = -30x^2 + 1200x + 4000$.

Le bénéfice réalisé par l'usine B est modélisé par la fonction définie g pour tout nombre réel $x \in [0; 50]$ par : $g(x) = x^3 - 96x^2 + 248x - 10000$.

Le bénéfice réalisé par l'usine C est modélisé par la fonction définie h pour tout nombre réel $x \in [40; 160]$ par $h(x) = -x + 2000 - \frac{6400}{x}$.

Tâches:

- Déterminer le bénéfice maximal de l'usine A ainsi que le nombre de machines produites pour réaliser ce bénéfice.

 1,5pt
- 2) Déterminer le bénéfice maximal de l'usine B ainsi que le nombre de machines produites pour réaliser ce bénéfice.
 1,5pt
- 3) Déterminer le bénéfice maximal de l'usine C ainsi que le nombre de machines produites pour réaliser ce bénéfice. 1,5pt

Présentation : 0,5pt