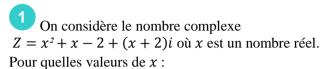
Lycée Bilingue de BAMYANGA, ANNEE SCOLAIRE 2021-2022

TRAVAUX DIRIGES N°1 SUR LES NOMBRES COMPLEXES APPROCHE

ALGEBRIQUE TIeC-D.

PROPOSES PAR M. NOUMSSI

ÉTUDE ALGÉBRIQUE DES NOMBRES **COMPLEXES**



OPÉRATIONS SUR LES NOMBRES COMPLEXES

Donnez la forme algébrique des nombres complexes suivants:

$$z_{1} = \left(\frac{3}{2} - 4i\right) + (9 + 2i); \ z_{2} = \left(5 - i\sqrt{3}\right)(3i);$$

$$z_{3} = (3 - i)(2i - 1)^{2}; \ z_{4} = \left(1 + i\sqrt{3}\right)^{3}; \ z_{6} = \frac{2 - i}{3i - 1}$$

$$z_{5} = \frac{i(1 - 7i)}{\left(2 + 3i\right)^{2}}.$$

 \mathfrak{F}_f est la fonction de $\mathbb C$ dans $\mathbb C$ définie par : $f(z) = (2-i)z^2 - (1+3i)z + 5$

Calculer
$$f(i)$$
, $f\left(\frac{1}{i}\right)$ et $f\left(\frac{3-i}{3+i}\right)$.

Z est un nombre complexe distinct de i de la forme x + iy (x, y réels).

Déterminer dans les deux cas suivants, la partie réelle et la partie imaginaire du nombre complexe Z:

a)
$$Z = -2z^2 + 3iz - 7$$
; b) $Z = \frac{2iz}{z - i}$.

NOMBRE COMPLEXE CONJUGUÉ

Donnez la forme algébrique du nombre complexe conjugué de chacun des complexes suivants:

a)
$$3 - 11i$$
; b) $i(9 + 2i)$; c) $(3 + i)(-13 - 2i)$;
d) $\frac{2-3i}{8+5i}$; e) $\frac{2}{1+i} - \frac{3}{1-i}$.

f est le polynôme défini sur ${\mathbb C}$ par $f(z) = z^2 - 7z + 9$.

1. Démontrer que pour tout complexe z, $\overline{f(z)} = f(\overline{z}).$

2. Calculer f(1+i). En déduire f(1-i).

Soit z un nombre complexe non nul. Pourquoi peut-on affirmer que chacun des nombres complexes suivants est soit réel, soit imaginaire pur ?

$$A = z^2 + \bar{z}^2$$
; $B = \frac{z - \bar{z}}{z^3 + \bar{z}^3}$; $C = \frac{z^2 - \bar{z}^2}{z\bar{z} + 2}$.

On considère le nombre complexe $Z = \frac{1-iz}{1+iz}$ où

1. Déterminer tous les complexes z distincts de *i* pour que le complexe Z soit réel.

2. Montrer que Z est imaginaire pur si et seulement si $z\bar{z}=1$.

Résoudre dans \mathbb{C} l'équation $z^2 - 2\overline{z} + 1 = 0$.

MODULE D'UN NOMBRE COMPLEXE

Calculer le module de chacun des complexes

b)
$$5 - 12i$$
; b) $i\sqrt{2}(-1 + i)$;

b)
$$5 - 12i$$
; b) $i\sqrt{2}(-1+i)$;
c) $\frac{\sqrt{6}-i\sqrt{2}}{2(1+i)}$; d) $\left(\frac{\sqrt{2}-i\sqrt{2}}{1-i\sqrt{3}}\right)^2$; e) $z = \left(\frac{-1+i\sqrt{3}}{\sqrt{3}+i}\right)^{1988}$

Soit $z = -\sqrt{2 - \sqrt{3}} + i\sqrt{2 + \sqrt{3}}$ un nombre

complexe.

1) Calculer z^2 .

2) Déduire le module de z^2 , puis celui de z.

Résoudre dans \mathbb{C} l'équation $z^2 + |z|^2 - 8 = 0$.

ÉQUATIONS DU SECOND DEGRÉ DANS C: RACINES CARRÉES D'UN NOMBRE **COMPLEXE**

Résoudre dans C chacune des équations

a.
$$z^2 + z + 1 = 0$$
 b. $z^2 + 2z + 2 = 0$

c.
$$(z+1)^3 = z^3$$
; d. $z^3 - 1 = 0$;

e.
$$z^4 + z^2 + 1 = 0$$
; f. $iz^2 + (1-5i)z + 6i - 2 = 0$.

(E) désigne l'équation suivantes :

 $z^2 - 2\cos\theta z + 1 = 0$ où θ est un réel de l'intervalle $\left]0,\frac{\pi}{2}\right[.$

- Résoudre cette équation dans C.
- b. On désigne par z_1 et z_2 les deux solutions de cette équation. Calculer en fonction de θ $z_1^2 + z_2^2$; $z_1^3+z_2^3$; $z_1^4+z_2^4$.
 - On considère dans C le polynôme défini $par P(z) = z^3 - 3z^2 - iz + 4 - i.$
- 1. Démontrer que l'équation P(z) = 0 admet une solution réelle que l'on déterminera.
- 2. Résoudre l'équation P(z) = 0.
- ¹⁶P est le polynôme de variable complexe z défini par:

$$P(z) = z^4 - 27z^3 + 6z^2 - 27z + 5$$

- 1. Établir que pour tout nombre complexe z, $P(\bar{z}) =$ P(z)
- 2. En déduire que si z_0 est une racine de P, alors \bar{z}_0 l'est aussi.
- 3. Calculer P(i) et résoudre dans \mathbb{C} l'équation P(Z) = 0.
- 171. u est un nombre complexe tel que $|u|=1, u \neq 1$ et z est un nombre complexe quelconque.
- 1. Montrer que $\frac{z-uz}{1-u}$ est réel.
- 2. Montrer que si $\frac{z-uz}{1-u}$ est réel, alors z est réel ou |u| = 1.
- P est le polynôme défini dans θ par :

$$P(z) = z^4 + 3z^3 + \frac{9}{2}z^2 + 3z + 1$$

- 1. Montrer que $P(\bar{z}) = P(\bar{z})$ et en déduire que si z_0 est une solution de l'équation P(z) = 0 alors $\bar{z}_0, \frac{1}{z_0}, \frac{1}{\bar{z}_0}$ sont aussi des solutions de cette équation.
- 2. Montrer que l'équation P(z) = 0 admet une racine de la forme a + i où a est réel à déterminer.
- Résoudre alors dans \mathbb{C} l'équation P(z) = 0.
- \mathcal{P} est le polynôme défini par : $\mathcal{P}(z) = z^3 3z^2 + (3-i)z - 2 + 2i$.
 - i. vérifier que \mathcal{P} admet une racine réelle α .
 - Déterminer les nombres complexes a et b tels ii. que $\mathcal{P}(z) = (z - \alpha)(z^2 + az + b)$.

- Résoudre alors l'équation $\mathcal{P}(z) = 0$ dans \mathbb{C} . iii.
- Résoudre dans \mathbb{C} l'équation $z^2 = 48 + 14i$.
- Le plan complexe muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

Déterminer l'ensemble des points M(x; y) du plan en posant z = x + iy tels que:

a)
$$\left| \frac{z+i}{z-i} \right| = 3$$
; b) $\left| \bar{z} + \frac{3}{2}i \right| = \sqrt{5}$;c) $|z + \bar{z} - 1| = 4$;

d)
$$|z + 5 - i| = |\bar{z} - 2 - i|$$
;

e)
$$|z + 1 + i| = |3z - 9 - 3i|$$
;

f)
$$(z\bar{z})^2 - z\bar{z} - 6 = 0$$
; g) $z^2 - (1 - 2i)^2 = \bar{z}^2 - (1 + 2i)^2$.

- h) $\frac{2z-1}{z^2}$ est un nombre réel;

$$1) \left| \frac{z - 2 + 4i}{z + 1 - 2i} \right| = 1$$

- i) $\frac{z^2}{z+1-2i}$ est un nombre réel; k) $\frac{z-2+4i}{z+1-2i}$ est un nombre imaginaire pur ; l) $\left|\frac{z-2+4i}{z+1-2i}\right| = 1$; m) $\frac{z+i}{z-1}$ soit un réel strictement positif.
- Soit l'équation (E): $z^{4} + 2z^{3} + 2z^{2} - 2z + 1 = 0 \ (z \in \mathbb{C})$
- 1) Démontrer que si z_0 est solution de (E), alors $\overline{z_0}$ est solution de (E).
- 2.a) Déterminer les nombres réels a et b tels que :

(E)
$$\Leftrightarrow$$
 $z^2 \left[\left(z - \frac{1}{z} \right)^2 + a \left(z - \frac{1}{z} \right) + b \right] = 0.$

- b) Résoudre dans \mathbb{C} l'équation $Z^2 + aZ + b = 0$, puis l'équation (E).
- 1. Résoudre dans C les équations :

a)
$$z^2 - 4z + 5 + i(z + 1) = 0$$

b)
$$(z^2 - 4z + 5)^2 + (z + 1)^2 = 0$$
.

- 2. En déduire qu'il existe quatre nombres réels a, b, c et d que l'on précisera tels que pour tout nombre réel x, on a : $(x^2 - 4x + 5)^2 + (x + 1)^2 = (x^2 + ax + b)(x^2 + cx + d)$
- Soit P le polynôme défini par : $\mathcal{P}(z) = z^3 - 2(1+2i)z^2 + 7iz + 3(1-3i).$
- 1) Démontrer qu'il existe un imaginaire pur $i\beta$ solution de l'équation : P(z) = 0.
- 2) Déterminer le polynôme Q tel que :

$$P(z) = (z - i\beta)Q(z).$$

- 3) Résoudre dans \mathbb{C} l'équation : P(z) = 0.
- Calculer et écrire sous forme algébrique les racines carrées des nombres complexes suivants :
- a) 15 8i; b) 2i; c) -i; d) -5 + 12i.