LYCÉE CLASSIQUE DE DSCHANG

Année Scolaire: 2025-2026

Département de Mathématiques

Évaluation: N°1

Épreuve: MATHÉMATIQUES

Niveau: 2nde C

Durée : 03h00'; Coef : 5

PARTIE A: EVALUATION DES RESSOURCES: (15 points)

Exercice 1: (5 points)

A) On considère les nombres : $A = \frac{1 + \frac{1 - \frac{3}{5}}{1 + \frac{3}{5}}}{\left(1 - \frac{3}{5}\right)\left(1 + \frac{3}{5}\right)} + \frac{3}{5}$ et $B = \frac{3^{2n+1} - 3^{2n}}{9^n + 9^{n+1}}$, où $n \in \mathbb{N}$.

Calculer A et donner le résultat sous la forme d'une fraction irréductible.
 Ecrire plus simplement B.
 1pt
 0,75pt

B) Soient a et b deux nombres réels strictement positifs et distincts.

1. Montrer que $\frac{\sqrt{a-b}}{\sqrt{a}-\sqrt{b}} = \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a-b}}$. 0,75pt

2. Montrer que $\left(\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}}\right)^2 = \frac{(a-b)^2}{ab}$.

C) x et y sont deux réels tels que -5 < x < -3 et 4 < y < 7.

1. Déterminer un encadrement de x - y et celui de xy.

2. Montrer que l'on a : $\frac{1}{5} < \frac{x-y}{xy} < 1$. **0,75pt**

Exercice 2: (5 points)

A) On donne les nombres $X = \frac{(4\sqrt{23}-13)(34+12\sqrt{19})+32}{3\sqrt{43}-21}$ et $Y = \frac{25000\times5^{-6}\times0,0002\times10^{5}}{0,0005\times2^{6}\times10^{-2}}$

1. Donner la notation scientifique de Y. 0,5pt

2. En utilisant une calculatrice,

a. Donner la troncature d'ordre 4 de X. 0,5pt

b. Donner l'approximation décimale d'ordre 4 de X par défaut. 0,25pt

c. Donner l'arrondie d'ordre 5 de X. **0,25pt**

B)1. Montrer que pour tous $x, y, z \in \mathbb{R}$ tels que x + y + z = 0, on a : $x^3 + y^3 + z^3 = 3xyz$. **0,75pt**

2. Montrer que pour tous x, y > 0, $\left(\frac{x+y}{2}\right)^3 \le \frac{x^3 + y^3}{2}$. **0,75pt**

C) 1. Résoudre dans \mathbb{R} les équations et inéquations suivantes :

a)
$$|2x - 5| = 1$$
, b) $|7 - x| = -1$, c) $|-x + 2| \le 1$.

2. a,b et c sont trois nombres réels positifs tels que $a \le b + c$. On pose $Q = \frac{a}{1+a} - \frac{b}{1+b} - \frac{c}{1+c}$.

a. Montrer que $Q = \frac{a-b-c-2bc-abc}{(1+a)(1+b)(1+c)}$. **0,5pt**

b. Montrer alors que $\frac{a}{1+a} \le \frac{b}{1+b} + \frac{c}{1+c}$.

Exercice 3: (5 points)

A) ABC est un triangle isocèle en A tel que AB = 6cm et BC=4cm.

E et F sont des points du plan tels que $\overrightarrow{AE} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ et $\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$.

- 1. Faire une figure.

 1. Faire une figure.

 2. Errire les coordonnées de \overrightarrow{EF} et \overrightarrow{BC} dans la base $(\overrightarrow{AB}, \overrightarrow{AC})$.

 1. Taire une figure.

 1. Faire une figure.

 1. Taire une figure.

 1. Tair
- **B)** Soit $(0; \vec{i}, \vec{j})$ un repère orthonormé du plan.

Soient les vecteurs $\vec{u} = \frac{\sqrt{6} - \sqrt{2}}{4}\vec{i} + \frac{\sqrt{6} + \sqrt{2}}{4}\vec{j}$, $\vec{w} = \frac{\sqrt{6} + \sqrt{2}}{4}\vec{i} - \frac{\sqrt{6} - \sqrt{2}}{4}\vec{j}$ et $\vec{r} = \vec{i} + 2\vec{j}$.

- 1. Montrer que \vec{u} est un vecteur unitaire0,75pt2. Montrer que le couple de vecteurs (\vec{u}, \vec{w}) est une base du plan.0,75pt
- **3. a.** Montrer que $\vec{i} = \frac{\sqrt{6} \sqrt{2}}{4} \vec{u} + \frac{\sqrt{6} + \sqrt{2}}{4} \vec{w}$ et $\vec{j} = \frac{\sqrt{6} + \sqrt{2}}{4} \vec{u} \frac{\sqrt{6} \sqrt{2}}{4} \vec{w}$. **0.5pt b.** En déduire les coordonnées du vecteur \vec{r} dans la base (\vec{u}, \vec{w}) . **0.5pt**

PARTIE B: EVALUATION DES COMPETENCES (5 points)

Au lycée Classique de Dschang, parmi tous les élèves de 2^{nde} C, 80 sont choisis pour participer à un jeu télévisé. A la fin de la première journée, le quart des candidats est éliminé ; à la fin de la deuxième journée, les deux tiers de ceux qui restaient sont éliminés ; à la fin de la troisième journée, les trois cinquièmes de ceux qui restaient sont éliminés. La cellule d'organisation décide de donner 500frs à ceux qui ne sont pas éliminés après le premier tour et triplera le gain de chaque candidat s'il parvient à accéder au tour suivant et ceci jusqu'à la finale.

Le responsable du laboratoire, Mr ONANA reçoit d'un élève de 2^{nde} C un morceau de métal de volume $v=21.5~\text{cm}^3$ à 0,1 près qui pèse m=300g à 0,2 près. Afin de déterminer la nature du métal, il aimerait trouver une valeur approchée de la masse volumique du métal ainsi que son incertitude. $\left(masse\ volumique: \rho = \frac{m}{n}\right)$.

Le proviseur du Lycée sollicite pour cette année scolaire les services d'une agence de distribution du service internet. L'ingénieur propose deux directions possibles : l'une portée par le vecteur $\vec{u} = 5\vec{\imath} - 2\vec{\jmath}$ et l'autre par le vecteur $\vec{v} = \frac{3}{2}\vec{\imath} - 2\vec{\jmath}$. Cependant, pour une bonne couverture internet en un lieu, le signal en ce lieu doit avoir la même direction que celle du serveur central qui est dirigé par le vecteur $\vec{w} = -3\vec{\imath} + 4\vec{\jmath}$ avec le couple $(\vec{\imath}; \vec{\jmath})$ qui est une base du plan.

<u>Tâches</u>

- 1. Quelle somme la cellule va-t-elle débourser à la finale pour les candidats participants? 1,5pt
- 2. Quelle est la valeur approchée de la masse volumique du métal ainsi que son incertitude? 1,5pt
- 3. Quelle direction doit choisir le proviseur pour avoir une bonne connexion ? 1,5pt

Présentation: 0,5 pt

«Ce n'est pas parce que les choses sont difficiles que nous n'osons pas, c'est parce que nous n'osons pas qu'elles sont difficiles» SENEQUE.