ANNEE SCOLAIRE: 2021/2022

CLASSE: PC

Durée: 3h coefficient: 6

Date:/10/2021

Évaluation de Mathématiques No 1 du trimestre No 1 Proposée par : M. DONTSA CEDRIC

NB: le correcteur tiendra compte de la rigueur dans la rédaction et de la clarté de la copie. Il est demandé à l'élève de justifier si besoin est, toutes ses affirmations.

PARTIE A: EVALUATION DES RESSOURCES (15 points)

EXCERCICE 1 : **QCM** Choisir la bonne réponse

(0.75 points)

1) Dans \mathbb{R} l'inéquation (I_m) : $-x^2 + 2x - 1 + m \ge 0$ (avec $m \le 0$) a pour ensemble solution :

 $(b)\{1-\sqrt{m}; 1+\sqrt{m}\}$ $(c)[1-\sqrt{m}; 1+\sqrt{m}]$ *a*) Ø

 $d){1} si m = 0$

2) (C) est le cercle d'équation : $x^2 + y^2 - 4x + 2y = 4$ et la droite (D_m) : 3x - 4y - 5m = 0.

a) (C) et (D_m) sont sécants $\forall m \in \mathbb{R}$ b) (C) et (D_m) sont sécants $m \le 5$ c) (C) et (D_m) sont tangents $\forall m \in \mathbb{R}$

c) (C) et (D₂) sont tangents

- **d**) (C) et (D_m) sont disjoints $\forall m \in \mathbb{R} \setminus [-1; 5]$
- 3) Dans \mathbb{R} l'équation (E): $x + 5\sqrt{x} 36 = 0$

a) admet une infinité de solution

b) n'admet pas de solution

c) admet une unique solution

d) admet deux solutions distinctes

EXERCICE 2 : (2.75 points) Inspiré du concours d'entrée à POLYTECHNIQUE YDE 2019

On considère les polynômes P et Q définis sur \mathbb{R} par $P(t) = t^4 - 4t^2 + t + 1$ et $Q(t) = t^4 - 4t^2 - t + 1$ et les nombres réels x, y, z et u sont tels que :

$$x = \sqrt{2 - \sqrt{3 - x}}$$
; $y = \sqrt{2 + \sqrt{3 - y}}$; $z = \sqrt{2 - \sqrt{3 + z}}$; $u = \sqrt{2 + \sqrt{3 + u}}$

1) Montrer que *x et y* sont des racines de *P*.

(0.5pt)

2) Montrer que z et u sont des racines de Q.

(0.5pt)(0.25pt)

3) a. Montrer que $\forall t \in \mathbb{R}, P(-t) = Q(t)$

(0.75pt)

b. En déduire deux autres racines de P et donner la forme factorisée de $P(t) \ \forall t \in \mathbb{R}$ 4) a. En déduire la valeur exacte du produit xyzu et montrer que z + u = x + y

(0.75pt)

EXERCICE 3 : (6 points)

I- On considère le polynôme P définit par $P(x) = -3x^4 + 6x^3 + 75x^2 - 78x - 360$

1) Montrer que -2 est racine de P.

(0.25pt)

On désigne par a, b et c trois autres racines de P autres que -2 et on définit les nombres réels

S, P, L et R par S = a + b + c; P = abc; L = ab + ac + bc et $R = \frac{2}{a} + \frac{2}{b} + \frac{2}{c}$

2) Donner une forme factorisée de P(x) en fonction de a, b et c

(0.25pt)

3) En déduire les valeurs exactes de S, P, L et R

(2pts)

4) On suppose dans la suite que a = 3; P = -60; $R = \frac{17}{20}$ et b > c

Déterminer les valeurs de *b et c*.

(0.5pt)

II- On considère le polynôme Q définit par $Q(x) = 6x^4 - 5x^3 - 38x^2 - 5x + 6$

1) Montrer que 0 n'est pas racine de Q.

(0.25pt)

2) Montrer que si un réel non nul α est racine de Q alors $\frac{1}{\alpha}$ l'est aussi.

(0.5pt)

3) Calculer Q(3) et en déduire deux racines de Q.

(0.75pt)

4) On suppose que $Q(x) = (3x^2 - 10x + 3)(ax^2 + bx + c)$. $a, b, c \in \mathbb{R}$

a) Déterminer les valeurs des réels a, b et c.

(0.75pt)

b) Résoudre dans l'inéquation (I) : $6x^4 - 5x^3 + 5 \le 38x^2 + 5x - 1$

(0.75pt)

EXERCICE 4: (5.5 points)

Le plan est rapporté au repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$. On considère la famille de courbes (\mathcal{C}_m) d'équation : $x^2 + y^2 + 2mx - 6y + 2m^2 + m + 3 = 0$ où m est un paramètre réel strictement positif ; la droite (\mathcal{D}) : $\sqrt{3}x + y - 7 + \sqrt{3} = 0$ et le point E(-1; 7).

- 1) a) Etudier le signe du polynôme P définit par $P(x) = -x^2 x + 6$. (0.5pt)
 - b) Etudier suivant les valeurs de m la nature la nature des courbes (\mathcal{C}_m) . (0.75pt)
- 2) On suppose dans toute la suite que m = 1.
- a) Montrer que (C_1) est un cercle et préciser les coordonnés du centre I et le rayon (0.75pt)
- b) Montrer que (C_1) et (D) sont tangents en un point A dont on précisera les coordonnées (0.75pt)
- c) Vérifier que E est extérieur à (C_1) et que (D) passe par E. (0.5pt)
- 3) (\mathcal{D}') désigne la tangente à (\mathcal{C}_1) passant par E autre que (\mathcal{D}) et B est le point de contact de (\mathcal{D}') et (\mathcal{C}_1) . Déterminer l'équation normale de (\mathcal{D}') . (1pt)
- 4) On rappelle que 4 points du plan sont dits cocycliques s'ils sont situés sur un même cercle.
 - a) Déterminer les coordonnées du centre Ω du cercle circonscrit au triangle *IAE*. (1pt)
 - b) Déterminer la distance ΩB et en déduire que les points I, A, E et B sont cocycliques. (0.5pt)

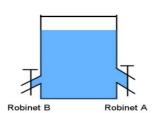
PARTIE B: EVALUATION DES COMPETENCES (5 points)

M. BaO dispose de quatre citernes C_1, C_2, C_3 et C_4 de forme cubique toutes remplies d'eau et d'arrêtes entières et consécutives (exprimées en mètres) telles que les contenus des citernes C_1, C_2, C_3 soient suffisants pour remplir la citerne C_4 . On décide de couvrir ces citernes avec du papier plastique (épaisseur négligeable) dont le m^2 est vendu à 1200F CFA. La citerne C_4 est munie de deux robinets A et B; le robinet A met 2 heures de plus qu'un robinet B pour vider la citerne. Lorsqu'on ouvre simultanément les deux robinets la citerne est vidée en 2heures 24 minutes. Il se trouve que M. BaO fête son anniversaire ce jour, à cet effet son frère lui demande son âge et celui-ci lui répond : « J'ai deux fois l'âge que tu avais quand j'avais l'âge que tu as ; et quand tu auras l'âge que j'ai, la somme de nos âges de sera égale à 63.»

Tâche 1 : Quel montant M. BaO va t'il dépenser pour recouvrir la citerne C_3 . (1.5pt)

Tâche 2 : Quel temps faut-il au robinet A seul pour vider la citerne ? (1.5pt)

Tâche 3 : Quel sera l'âge du frère de M. BaO en octobre 2022 ? (1.5pt)



Présentation: 0.5 pt

Proposed by: M. Cedric DONTSA [Pleg Maths]

Citerne C_4