LYCEE BILINGUE DE TOUGANG II				BP: 1033 Bafoussam II		
EXAMEN:	CLASSE:	CHIMIE THEODIOLE	Durée	Session:	Coef:	
CONTROLE N°1	T ^{le} C	CHIMIE THEORIQUE	02 heures	OCT 2025	1,5	

CONTROLENT T C		02 neures OCT 2023 1,3
Partie A: EVALUATION DES RESSOU	/ 12 points	
EXERCICE 1 : Vérification des savoirs		/ 4 points
1.1. Définir les termes suivants : a)- Oxydation	0,5x2=1pt	
1.2. Citer deux méthodes de préparation de l'ét	thanol.	0,5pt
1.3. Donner le nom du composé organique de la	0,5pt	
$\mathbf{CH_3} - (\mathbf{CH_2})_5 - \mathbf{CH(OH)} - \mathbf{CH_2} -$	$\mathbf{CH} = \mathbf{CH} - (\mathbf{CH}_2)_7 - \mathbf{COOH}$	
1.4. Ecrire la formule semi-développée du com	0,5pt	
3 – éthyl –2,4 – diméthylcyclohex	xan – 1 – olate de sodium	
1.5. QCM : Pour chaque question, indiquer	la (ou les) bonne(s) réponse(s).	
1.5.1. La molécule ci contre : HO – CH(CI	0,5pt	
A: est le 3,3-diméthylbutan-2-ol	; C : est un alcool tertiaire;	
B : est un alcool primaire	; D : est un alcool secondaire	; <u>.</u>
1.5.2. Les tests qui permettent de différencie	er les aldéhydes des cétones son	t: 0,5pt
A: Test à la liqueur de Fehling	; C: Test au réactif de Te	ollens;
B : Test à la 2,4-D.N.P.H	; D : Test au papier pH.	

1.6. Au cours de l'expérience de la lampe sans flamme réalisée avec l'éthanol, qu'est ce qui entretient

EXERCICE 2 : Application des savoirs

l'incandescence du fil de cuivre?

/ 4 points

0,5pt

2.1. On considère les équations bilan des réactions suivantes :

a)
$$CH_3$$
 H_2O_3 (X) $+$ (Y) (minoritaire) $+$ H_2O ;

b)
$$CH_3COOH + .(Z)$$
 \longleftarrow $CH_3-COO-CH(CH_3)_2 + H_2O$

2.1.1. Donner un nom à chacune des réactions (a) et (b).

- 0,25x2=0,5pt
- **2.1.2.** Ecrire les formules semi-développées des composés (X) et (Z) et les nommer.
- 0.5x2 = 1pt

- **2.2.** Un alcool tertiaire saturé (G) de formule C_xH_vO a pour atomicité 15.
- **2.2.1.** Ecrire deux relations entre x et y.

0,25x2 = 0,5pt

2.2.2. En déduire la formule brute de cet alcool.

0,5pt

2.2.3. Donner la formule semi-développée et le nom de cet alcool.

0,25x2 = 0,5pt

EXERCICE 3: Utilisation des savoirs

/ 4 points

3.1. Lors d'une séance de travaux pratiques, il est demandé à un groupe d'élèves d'identifier trois alcools notés (A_1) , (A_2) et (A_3) . On donne trois formules moléculaires brutes $C_4H_{10}O$, C_3H_8O et C_2H_6O ; chacune de ces formules peut être celle de l'alcool (A_1) , de l'alcool (A_2) ou de l'alcool (A_3) .

Pour identifier ces alcools ils réalisent les tests suivants :

- Premier test : Ils réalisent l'oxydation ménagée des alcools à l'aide du permanganate de potassium $(K^+ + MnO_4^-)$ en milieu acide et ils constatent que :
 - (A_1) et (A_2) réagissent pour donner respectivement les produits organiques (B_1) et (B_2) .
 - (A₃) ne donne pas de réaction.

- **Deuxième test :** Les produits (**B**₁) et (**B**₂) obtenus donnent avec la 2,4-dinitrophénylhydrazine (**2,4-DNPH**) un précipité jaune orangé ; mais seul (**B**₂) rosit le réactif de Schiff.
- **2.2.1.** Donner, en justifiant votre réponse, les fonctions chimiques des composés (B_1) et (B_2) . 0.5x2=1pt
- **2.2.2.** Identifier les alcools (A_1) , (A_2) et (A_3) en donnant leurs formules semi-développées et leurs noms. 0.5x3=1.5pt
- 3.2. Lors d'une soirée récréative, un individu absorbe deux (02) bouteilles de 65 cL chacune d'une bière à 5° et trois (03) verres de 20 mL chacun d'un vin à 12°.
- **3.2.1.** Déterminer le degré alcoolique de la boisson totale absorbée par cet individu.

1pt

3.2.2. Sachant que le volume sanguin d'un adulte est de 5 L et que 10% d'éthanol absorbé passe dans le sang.Déterminer l'alcoolémie de cet individu.

Données : Masse volumique de l'éthanol: $\rho_{\text{éthanol}} = 790 \text{ g.L}^{-1}$. $M_H = 1 \text{ g.mol}^{-1}$; $M_C = 12 \text{ g.mol}^{-1}$ et $M_O = 16 \text{ g.mol}^{-1}$.

Partie B: EVALUATION DES COMPETENCES

/8 points

Pour lutter contre l'alcoolisme en milieu scolaire, l'administration du Lycée bilingue de Tougang II a institué des séances surprises d'alcootest sur les élèves de l'établissement. Le règlement intérieur de l'établissement donne l'alcoolémie (c'est-à-dire la concentration en éthanol dans le sang) et la sanction encourue selon le tableau ci-dessous :

Taux d'alcoolémie	Sanctions	
Inférieur à 0,5 g/L	L'élève est déclaré non ivre	
Egale à 0,5 g/L	L'élève reçoit trois (03) jours de consigne et un blâme	
Supérieur à 0,5 g/L	L'élève est déclaré ivre et reçoit huit (08) jours d'exclusion avec corvée	

L'élève **TALLA** suspecté d'être en état d'ivresse pendant la kermesse de lancement des activités post et périscolaires, est soumis à l'alcootest suivant le protocole expérimental réalisé par un groupe d'élèves du club santé dans le laboratoire de chimie du lycée.

Ce groupe d'élèves prélève 10 mL de son sang, y ajoute un peu d'acide sulfurique, une solution de dichromate de potassium $(2K^+ + Cr_2O_7^-)$ en excès, de concentration molaire $C_0 = 0,05 \text{ mol.L}^{-1}$ et de volume $V_0 = 20 \text{ mL}$.

Après un temps suffisamment long, il dose l'excès de dichromate de potassium par une solution de thiosulfate de sodium $(2Na^+ + S_2O_3^{2^-})$ de concentration Cr = 0.9 mol.L⁻¹. Le point d'équivalence est atteint pour un volume Vr = 6 mL de thiosulfate de sodium.

En exploitant les données de cette activité expérimentale, prononce-toi clairement sur la sanction encourue par l'élève Talla.

```
\frac{\text{Donn\'es}:}{\text{Couples redox}:} \text{ $M_{\rm H} = 1$ g.mol$^{-1}$ ; $M_{\rm C} = 12$ g.mol$^{-1}$ et $M_{\rm O} = 16$ g.mol$^{-1}$ ; $Couples redox: $Cr_2O_7^{2-}$ / $Cr$^{3+}: $E^{\circ}_1 = 1,33$ V ; $CH_3COOH$ / $CH_3CH_2OH: $E^{\circ}_2 = 0,03$ V; $S_4O_6^{2-}$ / $S_2O_3^{2-}: $E^{\circ}_3 = 0,08$ V.}
```

GRILLE DE CORRECTION

Critères	Barème
Interprétation correcte de la situation	2pts
Utilisation correcte des outils de la discipline	4pts
Cohérence de la production	2pts

Examinateur: M. Valery PEDIER