

COLLEGE LA PREVOYANCE DE MAKEPE MISSOKE				
DEPARTEMENT D'INFORMATIQUE	DEVOIR SURVEILLE N°1	ANNEE SCOLAIRE: 2025 – 2026		
MATIERE : INFORMATIQUE CLASSES : T ^{les} CD	DUREE : 2 heures	COEFFICIENT : 2		

Compétences visées :

- > Utiliser les structures de contrôle pour résoudre des problèmes ;
- Exécuter les algorithmes de recherche séquentielle et de tri par insertion ;
- > Utiliser les structures de données.

EPREUVE THEORIQUE D'INFORMATIQUE

<u>PREMIERE PARTIE:</u> GENERALITES SUR LES ALGORITHMES ET STRUCTURES DE CONTRÔLE 8PTS

Exercice 1: 6pts

On voudrait déterminer la somme des cinq premiers termes d'une suite arithmétique V_n d'expression suivante :

$$\begin{cases} V_0 = 2 \\ V_{n+1} = 3V_n + 4 \end{cases}$$

L'algorithme ci-dessous a été écrit par votre enseignant pour résoudre ce problème.

1	algorithme somme_termes	6	pour i allant de 1 à 4 faire
2	var i, v, s: entier;	7	v ← 3v + 4;
3	debut	8	$s \leftarrow s + v$;
4	v ← 2;	9	finpour
5	s ← v;	10	ecrire ("la somme des termes =", s);
		11	fin.

A l'aide de vos connaissances en algorithmique, répondez aux questions suivantes :

1- Définir algorithme. (1pt)

2- Identifier la structure itérative utilisée dans cet algorithme. (0.5pt)

3- Relever dans cet algorithme: $(0.25pt \times 4 = 1pt)$

- a) Une condition
- b) Une instruction d'affichage
- c) Une variable et son type
- d) Une instruction d'initialisation
- 4- Réécrire les instructions de la ligne 6 à la ligne 9 en utilisant la boucle tant que. (1pt)
- 5- Rappeler la différence entre la boucle « **pour** » et la boucle « **tantque** ». (0.5pt)
- 6- Exécuter cet algorithme. (2pts)

Exercice 2: 2pts

La population de SimAlpha est de 10000000 habitants et elle augmente de 500000 habitants par an. Celle de SimBeta est de 500000 habitants et elle augmente de 3% par an. Ecrire un algorithme permettant de déterminer dans combien d'années la population de SimBeta dépassera celle de SimAlpha.

<u>DEUXIEME PARTIE</u>: LES STRUCTURES DE DONNEES ET TRI PAR INSERTION 10PTS

Exercice 1: 4pts

Un point du plan est donné par son abscisse x et son ordonné y ; après avoir analysé l'algorithme suivant qui permet de calculer les coordonnées d'un vecteur et la distance qui sépare deux points quelconques, répondez aux questions ci-contre :

1	algorithme geometrie_analytique_du_plan	1- Identifier la structure de données permettant
2	Type Point = Enregistrement (de représenter un point du plan. (0.5pt)
3	x, y : reels ;	2- Recopier la partie de l'algorithme qui crée le
4		type Point. (1pt)
5	var A, B, AB, distanceAB : point;	3- Nommer les champs que comporte la
6	debut	structure Point. (0.5pt)
7	ecrire ("coordonnées du point A");	4- Ecrire la suite d'instructions de la ligne 11
8	lire (A.x, A.y);	permettant de calculer les coordonnées du
9	ecrire ("coordonnées du point B");	vecteur AB (AB.x et AB.y). (1pt) 5- Ecrire l'instruction qu'il faut entrer à la ligne
10	lire (B.x, B.y);	12 pour calculer la distance AB. (1pt)
11	/* ici on calcule les coordonnées du vecteur AB */	NB: utiliser la fonction RACINE () sur
12	/* ici on calcule la distance AB */	l'instruction de la ligne 12 pour le calcul de la
13	ecrire ("La distance AB vaut", distanceAB);	distance AB
14	ecrire ("Le vecteur AB (", AB.x,", ", AB.y, ")");	
15	fin.	

Exercice 2: 6pts

1- Déterminer l'indice_max d'un tableau de taille 20 sachant que l'indice_min est 4.

(0.25pt)

2- Soit le tableau Tab ci-dessous :

-								
	10	4	1.6	2	0	10	22	<i>5 C</i>
	12	4	10		9	10	22	50
		· •	- 0		_	_ 0		- 0

N.B: prendre zéro (0) comme indice_min.

a) Définir structure de données.

(1pt)

- a) Proposer une autre structure de données de votre choix en dehors des tableaux et des enregistrements. (0.25pt)
- b) Ecrire la déclaration du tableau ci-dessus de deux manières différentes. (0.5

(0.5pt + 0.5pt = 1pt)(0.25pt * 2 = 0.5pt)

c) Déterminer Tab[2] et Tab[5].

(1--4)

d) Expliquer en quelques lignes en quoi consiste le tri par insertion.

(1pt)

e) En utilisant l'algorithme de tri par insertion, trier le tableau Tab ci-dessus.

(2pts)

TROISIEME PARTIE: LA RECHERCHE SEQUENTIELLE

2PTS

Soit l'algorithme de recherche séquentielle ci-dessous :

1	algorithme recherche_valeur	9	i ← i+1;
2	var m, i : entier ;	10	fintantque
3	tab : tableau [n] de entier ;	11	si (i <= n) alors
4	debut	12	ecrire ("élément en position", i);
5	ecrire ("entrer l'élément recherché");	13	sinon
6	lire (m);	14	ecrire ("élément introuvable");
7	i ← 1;	15	finsi
8	tantque (i <= n et tab [i] <> m) faire	16	fin.

- 1- Expliquer en quelques lignes le principe de la recherche séquentielle. (1pt)
- 2- Exécuter l'algorithme ci-dessus pour rechercher l'élément m= 13 dans le tableau Tab ci-dessous. (1pt)