FICHE DE TRAVAUX DIRIGES SUR LES STATISTIQUES

EXERCICE 1

On a écrasé et dissout un comprimé d' « aspirine 500 » dans l'eau. Un certain volume de cette solution est dosé avec une solution d'hydroxyde de sodium. Le tableau ci-dessous donne le volume x_i (en millilitre) de la solution obtenue et son potentiel d'hydrogène y_i

Volume (x_i)		4	6	7	8	9	10	10,3
$PH(y_i)$	3,3	3,5	3,7	3,9	4,1	4,4	4,7	5

- 1. Représenter le nuage de points associé à cette série double dans un repère orthonormé (unité : 1 cm) (1pt)
- 2. Ce nuage suggère-t-il un ajustement linéaire?
- 3. Calculer le coefficient de corrélation linéaire et confirmer la conjecture faite à la question 2. (1pt)
- 4. Ecrire une équation de la droite de régression de Y en X
- 5. En déduire une estimation de la valeur du PH de la solution pour un volume de 11 ml. (0,25pt)

EXERCICE 2

Le tableau suivant donne le poids y en kg d'un nourrisson, x jours après sa naissance.

x_i	5	7	10	14	18	22	26
y_i	3,61	3,7	3,75	3,85	3,90	4,05	4,12

- 1) Représenter le nuage de points associé à cette série statistiques dans un repère orthogonal.
- 2) Déterminer les coordonnées x et y du point moyen de cette série et le placer sur le graphique.
- 3) a) Calculer la variance de X, variance de Y.
 - b) Sachant que $Cov\ X,Y=1,239$, calculer le coefficient de corrélation de cette série statistique. Γ .
 - c) Donner une interprétation de Γ.
- 4) a) Déterminer une équation de la droite de régression de y en x et représenter cette droite sur le graphique.
- b) Donner une estimation du poids du nourrisson 30 jours après sa naissance.

EXERCICE 3

Un éleveur de chèvres a classé ses bêtes selon leur masse en kg : les données sont les suivantes

Poids (x _i)	10	20	30	40	50	60
Effectif (y _i)	3	5	10	13	18	21

1) Représenter le nuage de points de cette série

- 2) a) Un ajustement linéaire est-il possible?
- b) Déterminer la droite de régression de y en x par la méthode de Mayer
- c) Déterminer la droite de régression de y en x par la méthode de moindres de carrés
- d) Calculer le coefficient de corrélation linéaire et confirme le réponse 2-a).
- 3) Toutes les chèvres sont dans un enclos, un acheteur choisit au hasard et successivement trois chèvres. On appelle X la variable aléatoire égale au nombre de chèvres de 40kg contenu dans le choix de l'acheteur.
- a) Déterminer les éléments de $X(\Omega)$
- b) Déterminer la loi de probabilité de X
- c) Calculer l'espérance mathématique de X

EXERCICE 4

Dans 10 exploitations agricoles d'une région, on a mesuré la taille de l'exploitation (en dizaine d'hectares) et bénéfice annuel net (en milliers de franc CFA) :

Taille x_i	1	2	3	4	5	6	7	8	9	10
Bénéfice y _i	1200	3000	4200	600	4800	5400	4200	1800	8100	9600

- **1. a.** Représenter le nuage de point correspondant, ainsi que le point moyen G du nuage
 - **b.** Donner le point moyen G_1 du nuage représenté par les cinq dernières exploitations.
- **c.** Donner l'équation de droite G_1, G_2 et la représenter
 - NB : Cette droite est appelé droite de Mayer elle passe par le point moyen du nuage.
- **2. a.** Calculer le coefficient de corrélation linéaire ; justifier l'existence d'un lien entre le bénéfice et la taille de l'exploitation
 - **b.** Utiliser la méthode des moindres carrés pour déterminer l'équation de la droite d'ajustement affine sous la forme y = ax + b. Tracer cette droite.

Réalise-t-elle un bon ajustement ?

Lire sur cette droite d'ajustement la taille de l'exploitation réalisant un bénéfice réalisant un bénéfice nul.

3. Si on considère une exploitation de 0,5ha quel sera le bénéfice de cet ajustement ?

EXERCICE 5

Soit X,Y une série statistique double, D la droite de régression de y en x et de D' la droite de régression de x en y

$$D: y = 1.5x + 6.5$$
 $D': x = -0.6y - 4.22$

- 1) Déterminer les coordonnées du point moyen G
- 2) En déduire les moyennes x et y des variables X et Y
- 3) Calculer le coefficient de corrélation linéaire entre X et Y

EXERCICE 6

Une enquête est menée pour établir le nombre d'acheteurs (en milliers) d'un produit en fonction de son de vente (en milliers de frs).

Prix de vente x_i	1	1,5	2	3	3,5
Nombre d'acheteurs y_i	3	2,5	2	1	0 ,75

- **1.** Représenter le nuage de points associés à la série x_i , y_i dans un repère orthonormé ainsi que le point moyen G. **0**, **75pt**
- **2.** Calculer le coefficient de corrélation linéaire de la série x_i , y_i . Le résultat permet-il d'envisager un ajustement linéaire ?
- **3.** Montrer qu'une équation de la droite de régression de y en x par la méthodedes moindres carrés est y = -0.92x + 3.87. **0**, **5pt**
- 4. Tracer cette droite sur le graphique de la question 1. 0,25pt
- **5.** Utiliser cet ajustement pour estimer le nombre d'acheteurs potentiels si le produit est vendu à 4500 frs **0**, **25pt**

EXERCICE 7

On dispose des résultats des ventes annuelles en milliers de dollars d'une entreprise sur huit années consécutives à partir de l'année 1999. On note x le numéro de l'année (ainsi, l'année 1999 est numérote x=1) et on note y la valeur en milliers de dollars des ventes de l'entreprise.

Année	1999	2000	2001	2002	2003	2004	2005	2006
Numéro x	1	2	3	4	5	6	7	8
Ventes y	9,1	11	12,5	15,5	18	18,7	20	23

- 1) Représenter le nuage de points de la série double de caractère (X;Y).
- 2) Calculer le coefficient de corrélation linéaire entre X et Y. interpréter le résultat.
- 3) a) trouver une équation de la droite de régression de y en x.
 - b) En déduire une estimation des ventes de l'entreprise en 2010 si la situation économique ne change pas.

EXERCICE 8

A- Un étude statistique présente dans un tableau suivant les dépenses (x_i) et les chiffres d'affaires (y_i) bimensuel d'une entreprise en une année donnée, les montants étant exprimés en millions de francs.

(x _i)	12	17	11	13	31	20
(y_i)	99	130	92	108	232	150

- 1) Construire le nuage de points associe a cette série statistique
- 2) Déterminer les coordonnées du points G.
- 3) Déterminer une équation de la droite de régression de y en x.
- 4) Calculer le coefficient de corrélation linéaire de cette série statistique puis conclure.
- 5) Quel est en deux mois le chiffre d'affaire si la dépense bimensuelle est de 300millions ?
- B- On admet qu'il est trois fois plus probable lors d'une naissance d'avoir une fille que d'avoir un garçon.
- 1) Déterminer la probabilité d'avoir une fille et celle d'un garçon lors d'une naissance.
- 2) Dans une famille où il ya eu cinq naissances, déterminer la probabilité d'avoir au moins deux garçons.

EXERCICE 9

Série statistique à deux caractères.

Le tableau ci-dessous indique la puissance X en chevaux et la cylindrée en cm³ de huit véhicules à moteur diesel.

Numéro véhi	1	2	3	4	5	6	7	8
Puissance X	35	55	60	60	65	70	72	75
Cylindrée Y	1000	1600	1800	1700	1900	2000	2100	2500

1a Représenter le nuage de la série (x, y)

(prendre sur l'axe des abscisses 1cm pour 10 chevaux et sur l'axe des ordonnées 2cm pour 1000cm³)

- b) Le nuage ainsi représenté laisse-t-il entrevoir un ajustement linéaire ?
- 2) Calculer la puissance moyenne et la cylindrée moyenne des huit véhicules.
- 3) Sachant que la covariance du couple (x, y), vaut 4662,5
- a) Ecrire une équation cartésienne de la droite de régression de x en y.
- b) Donner une estimation au cheval près de la puissance d'un moteur de cylindrée 3200 cm^{3.}

Exercice 10

Le tableau suivant recense, par clinique, le nombre de postes de personnel non médical en fonction du nombre de lits de la clinique :

Clinique	C1	C2	C 3	C4	C5	C6	C7	C8	C9	C10	C11
Nombre lits X	122	177	77	135	109	88	185	128	120	146	100
Nombre de postes Y	205	249	114	178	127	122	242	170	164	188	172

1. Construire le nuage de points Mi(xi ; yi) correspondant à cette série statistique. Unités graphiques :

en abscisse: 1 cm pour 10 lits

en ordonnée: 1 cm pour 20 postes.

- 2. Calculer les coordonnées du point moyen G du nuage et le placer sur le graphique.
- 3. Calculer le coefficient de corrélation linéaire r. Un ajustement affine est-il justifié ?
- 4. Déterminer une équation de la droite de régression D de y en x par la méthode des moindres carrés. Tracer

la droite D sur le graphique. (Marquer les points utilisés pour tracer D)

5. Une clinique possède 25 lits. En utilisant les résultats de la question 4, à combien peut-on estimer, par

calcul, le nombre de postes de personnel non médical ? Illustrer sur le graphique.

EXERCICE 11 Comparaison de deux ajustements

Un hypermarché dispose de 20 caisses.

Le tableau ci-dessous donne le temps moyen d'attente à une caisse en fonction du nombre de caisses ouvertes :

Nombre de caisses ouvertes X	3	4	5	6	8	10	12
Temps moyen d'attente (en min) Y	16	12	9,6	7,9	6	4,7	4

1. Construire le nuage de points Mi(xi ; yi) correspondant à cette série statistique. Unités graphiques :

en abscisse: 1 cm pour une caisse ouverte

en ordonnée : 1 cm pour une minute d'attente.

- 2. Calculer les coordonnées du point moyen G du nuage et le placer sur le graphique.
- 3. Un ajustement affine.
- a) Calculer le coefficient de corrélation linéaire r.
- b) Déterminer l'équation de la droite de régression D de y en x par la méthode des moindres carrés. Tracer la droite D sur le graphique. (Marquer les points utilisés pour tracer D)
- c) Estimer à l'aide d'un calcul utilisant l'équation de la droite D:
- i) Le nombre de caisses à ouvrir pour que le temps moyen d'attente à une caisse soit de 5 minutes.
- ii) Le temps moyen d'attente à la caisse lorsque 15 caisses sont ouvertes.
- iii) Pensez-vous que, dans le cas de la question ii), l'ajustement affine soit fiable ?

4. Un ajustement non affine.

On considère la fonction f définie sur]0 ; $+\infty$ [par : $f(X) = \frac{\alpha}{x}$

- a) Déterminer α de façon à avoir : f(3) = 16.
- b) Tracer alors la représentation graphique C de f dans le repère utilisé pour le nuage.
- c) Estimer à l'aide d'un calcul utilisant la fonction f :
- i) Le nombre de caisses à ouvrir pour que le temps moyen d'attente à une caisse soit de 5 minutes.
- ii) Le temps moyen d'attente à la caisse lorsque 15 caisses sont ouvertes