CENTRE POLYVALENT LA PERFORMANCE

TEL: +(237) 655 317 809 / 690 255 107 /

655 611 916



Année scolaire: 2025 / 2026

Classe: Père F3

Travaux dirigés

Durée: 3H Coeff: 4

(CL Nº 1

ÉPREUVE DE MACHINE ELECTRIQUE

## PARTIE I: TECHNOLOGIE

6PTS

1. Définir : aimant, ferromagnetisme, hystérésis et electroaimant

4\*0.5pt

2. Enonce la loi de LENZ et la loi de LAPLACE

2pts

3. Comment fait-on pour réduire les pertes par courant de FOUCAULT?

0.5pt

4. Quels sont les domaines d'applications des courants de FOUCAULT?

2\*0.5pt

5. Quel est l'inconvénient des courant de FOUCAULT?

0.5pt

## PARTIE II: electrotechnique 14PTS

Exercice 1: 7pts

On considère un circuit magnétique en forme d'anneau de diamètre intérieur 40mmet de diamètre extérieur 45mm on étudie le matériau aux niveau magnétiques et on dresse le tableau suivant :

| H(A/m) | 0 | 900 | 2200 | 3900 | 7000 |
|--------|---|-----|------|------|------|
| B(T)   | 0 | 0.6 | 1.2  | 1.6  | 2    |

1. Tracer la courbe B = f(H)

2.5pts

- 2. Calculer la fimm nécessaire pour obtenir un champ de 1 tesla en faisant circuler un courant de 1.1A dans le circuit.

  2.5pts
- 3. Calculer le nombre de spire correspondant

2pts

## Exercice 2: 7pts

On considère un solénoïde de longueur L=400cm constitue par une seule couche de spire jointive de diamètre D=5cm. Les spires sont formées de diamètre d=0.8mm recouvert d'une couche d'isolant d'épaisseur e=0.1mm. La résistivité du métal constituant le fil est  $f=1.6*10^{-8}$ mm ce solénoïde est branche au bornes de générateur de courant continu de fém. E= 24V et de résistance interne r=1 $\Omega$ .

1. Déterminer la résistance du fil constituant le solénoïde

3pts

2. Calculer l'induction magnétiques au centre du solénoïde

2pts

3. Calculer son inductance propre. On rappelle que  $\varphi$ = NBS=LI

2pts

octobre 2025