Ministère des Enseignements Secondaire

Cours de Répétition Excellence++

Tél: 678538676 / 673882629

Enseignant: Chinois Noubissi

Votre SUCCES EST NOTRE PRIORITE

Année Scolaire : 2023/2024

Classe: Tle D et TI Durée: x heurs

Epreuve : Mathématiques

FEUILLE DE TRAVAUX DIRIGES SUR LES NOMBRES COMPLEXES ET TRANSFORMATIONS DU PLAN.

EXERCICE 1

- 1) Résoudre dans \mathbb{C}^2 le système suivant : $\begin{cases} 4iz iz' = 5 + 3i \\ (2-i)z (2+i)z' = -6i \end{cases}$
- écrire z et z' sous la forme algébrique puis sous la forme trigonométrique
- 3) a- determiner la partie réelle et imaginaire du nombre complexe $z = \frac{2(1-3i)}{1-2}$
 - b- Determiner le module et un argument de 1 + i
 - c- En déduire la forme trigonométrique de $z_2 = (\overline{z})^2$
- 4) Résoudre dans \mathbb{C} l'équation (E): $z^2-2i\overline{z}=0$, où \overline{z} est le conjugué du nombre complexe z

EXERCICE 2

On donne deux nombres complexes $z_1 = -1 + i$ et $z_2 = -\sqrt{2} - i\sqrt{6}$

- 1) Donner la forme trigonométrique de chacun des nombres complexe z_1 et z_2
- 2) Ecrire le quotient $\frac{z_1^2}{z^2}$ sous la forme algébrique puis sous la forgie trigonométrique.
- 3) En déduire les valeurs exactes de $\cos\left(-\frac{5\pi}{12}\right)$ et sin

EXERCICE 3

Soit θ un nombre réel appartenant à]0; $\frac{\pi}{2}[$ et z un hombre complexe. On pose :

 $P(z) = z^3 - (2\sin\theta + i\cos\theta)z^2 + (1 + i\sin\theta)z^{-1}\cos\theta.$

- a) Calculer P(icosθ).
 - b) En déduire que $P(z) = (z + icos\theta)(z^2 2sin\theta z + 1)$.
- 2. Résoudre dans C l'équation (2) 0 et écrire ses solutions sous forme exponentielle.

EXERCICE 4

On donne : $z_0 = 1 - i\sqrt{3}$.

- Montrer que
- 2. Résoudre dans Créquation $z^4 = 1$.
- 3. En déduire les solutions de (E) : $z^4 = -8 + 8i\sqrt{3}$ sous forme algébrique et sous forme Trigonométrique. On remarquera que (E) est équivaut à $\left(\frac{z}{1-i\sqrt{3}}\right)^4 = 1$.
- 4. Dans le plan complexe muni d'un repère orthonormé direct $(0; \vec{u}; \vec{v})$, unité graphique 2 cm, Placer les points A, B, C et D d'affixes respective

$$.z_A = 1 - i\sqrt{3}$$
, $z_B = -1 + i\sqrt{3}$, $z_C = \sqrt{3} + i$ et $z_D = -\sqrt{3} - i$.

5. Donner une écriture complexe de la rotation r de centre O et d'angle $\frac{\pi}{2}$.

EXERCICE 5

On donne le nombre complexe $u = \sqrt{2 - \sqrt{2}} + i\sqrt{2 + \sqrt{2}}$

- a) calculer u² et u⁴, puis calculer le module et un argument de u⁴
 - b) En déduire le module et un argument de u
 - c) Déduire de la question précédente les valeurs exactes de $cos\left(\frac{3\pi}{a}\right)$ et $sin\left(\frac{3\pi}{a}\right)$.
- On considère dans un plan complexe P muni d'un repère orthonormé(o, \vec{u}, \vec{v}). À tout point M(x,y)

On associe le point son affixe z = x + iy.

Déterminer l'ensemble des points M de P pour lesquels le module de uz est égal à 8

EXERCICE 6

On considère le complexe p défini par : $P(z) = z^2 + (1-i)z + 2 - 2i = 0$.

- 1. a) Calculer $(1+3i)^2$.
 - b) Résoudre dans l'ensemble \mathbb{C} des nombres P(z) = 0.
- 2. Soit φ l'application du plan complexe qui à tout point M d'affixe z ; $z \neq -1$ associe le Point M' d'affixe z' tel que $z' = \frac{iz-2+2i}{z+1}$.
 - a) Montrer que l'application φ admet deux point invariants dont on précisera les affixes
 - b) Déterminer l'ensemble (D) des points M du plan tels que |z'| = 1
 - c) On pose z = x + iy et z' = x' + iy', x, y, x', et y' sont des réels. Exprimer x'et y' en fonction de x et y.
 - d) Montrer que l'ensemble (H) des points M tels que z' soit réel est un cercle privé D'un point. Préciser le centre et le rayon de (H)
 - e) Montrer que l'ensemble (K) des points M tels que z' soit imaginaire sur est une droit Privée d'un point. Donner une équation de (K).

EXERCICE 7

Soit E, F, G et H les points d'affixes respectives 2 + i; -1 + 2i -2 - i et 1 - 2i. S est la similitude Direct du plan qui transforme O en F et H en G

- b) En déduire l'angle et le rapport de S
- c) Donner l'écriture complexe de S, puis préciser son centre

EXERCICE 8

- A- 1. Linéariser $\cos^3 x$ et $\cos x \sin^3 x$
 - 2. écrire le nombre complexe $(\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2})^{800}$ sous la forme a + ib (où b = 0)
- B- Déterminer les racines quatrieme de –8-8i√3 et représenter leur point images dans Le plan complexe.
 - I- θ est le nombre réel de l'intervalle] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [.

Déterminer le module et l'argument de chacun des nombres complexes suivant :

(a)
$$\frac{e^{i\theta}-e^{-i\theta}}{e^{i\theta}+e^{-i\theta}}$$
 (b) $\frac{i\theta}{i\theta+1}$ et c) $\frac{1+i\tan\theta}{1-i\tan\theta}$

II- θ désigne un réel appartenant à $[0, 2\pi]$.

Résoudre dans \mathbb{C} , l'équation d'inconnue z: $z^2 - (2^{\theta+1}cos\theta)z + 2^{2\theta} = 0$.

EXERCICE 9

Soit P le polynôme défini par : $P(z) = z^3 - (6+9i)z^2 + (-15+33i)z + 42 + 2i$.

- 1. Démontrer que p admet une solution imaginaire z_0 .
- 2. Déterminer les réels α et β tels que : $P(z) = (z z_0)(z^2 + \alpha z + \beta)$.
- 3. Résoudre l'équation dans \mathbb{C} l'équation P(z) = 0.
- 4. On rapporte le plan complexe au repère orthonormé(o, \vec{u} , \vec{v}) et on considère les points A, B et C d'affixes respective $z_A = 2i$, $z_B = 3 + 2i$ et $z_C = 3 + 5i$
 - a) Placer les points A, B et C dans le repère
 - b) Calculer $\frac{z_A-z_B}{z_c-z_B}$ et en déduire la nature précise du triangle ABC
- 5. On désigne par r la rotation de centre B qui transforme C en A
 - a) quel est l'angle de la rotation r

- b) En déduire l'écriture complexe de r
- 6. Déterminer l'écriture complexe de la similitude directe s de centre A qui transforme B en C

EXERCICE 10

Le plan complexe est muni du repère orthonormé direct(o, i, j)

- 1) On considère le polynôme P défini sur $\mathbb C$ par $p(z)=z^3-\big(2+i\sqrt{2}\big)z^2+2\big(1+i\sqrt{2}\big)z-2i\sqrt{2}$.
 - a) Montrer que le nombre complexe $z_0 = i\sqrt{2}$ est une racine de p(z)
 - b) Déterminer les couples a et b tels que $\forall z \in \mathbb{C}, P(z) = (z i\sqrt{2})(z^2 + az + b)$.
 - c) En déduire les solutions dans C de l'équation P(z)=0
- 2) On considère les points A, B, J et K d'affixes respectives $z_A=1+i$, $z_B=1-i$, $z_i=i\sqrt{2}$, $z_K=e^{i\frac{3\pi}{4}}$.
 - a) Placer les points A, B, J et K
 - b) Soit L le symétrique du point J par rapport au point K. Montrer que l'affixe du point L est $z_L = -\sqrt{2}$.
 - c) Montrer que les points A, B et J appartiennent au cercle de centre O et de vayon $\sqrt{2}$.
 - d) Soit D le point d'affixe $z_D = -1 + i$. On considère la rotation r de centre qui transforme J en D. Déterminer l'écriture complexe de r
- 3) Déterminer et construire l'ensemble (C) des point M(z) tels que |2z+2+2i|=8
- 4) Soit S la transformation qui a tout point M(z) associe le point M(z) tet que : $z' = \left(\frac{1}{2} + \frac{1}{2}i\right)z$.
 - a) Donner la nature et les éléments caractéristiques de Ş 🕻
 - b) Calculer l'affixe du point A' image du point A par S
 - c) Déterminer l'expression analytique de S

EXERCICE 11

Dans le plan complexe P, on considère les points M et M'd'affixe respectives

z=x+iy et z'=x'+iy où $(x,y,x'et\ y')\in\mathbb{R}$ soit S la transformation du plan P dans lui-même

Telle que
$$S(M) = M'$$
 avec : $\begin{cases} x' = x + y + 2 \\ y' = -x + y + 1 \end{cases}$

- 1) Exprimer z' en fonction de z
- 2) En déduire que S est une similitude directe, préciser ses éléments caractéristiques
- 3) On considère la rotation R de P dans P d'angle 60° et de centre $\Omega(1,-2)$ telle que R(M)=M'. Exprimer z' en fonction de z
- 4) On pose H = SoR, telle que H(M) = M'
 - a- Exprimer z' en fonction de z
 - b- En déduire la nature de H et ses éléments caractéristiques

EXERCICE 12

Determiner la nature des transformations suivantes du plan complexe et donner tous leurs éléments

Caractéristique

a)
$$z' = z + 1 + i$$

b)
$$z' = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z + 1 - i$$

c)
$$z' = -z + 1 - 2i$$

d)
$$z' = 4z + 5 - 4i$$

e)
$$z' = (2-2i)z - 1 + i$$

EXERCICE 13

- 1) Résoudre dans \mathbb{C} l'équation $z^2 2z + 2 = 0$.
- 2) Soit K, L et M les points d'affixes respectives : $z_K = 1 + i$; $z_L = 1 i$ et $z_M = -i\sqrt{3}$. Placer ces points dans un repère orthogonale direct $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$.
- 3) a. Soit N le symétrique de M par rapport à L. Démontrer que $z_N = 2 + i(\sqrt{3} 2)$.
 - b. La rotation de centre O et d'angle $\frac{\pi}{2}$ transforme M en le point A et N en le point C. Déterminer les affixes respectives z_A et z_C des points A et C
 - c. La translation de vecteur \vec{u} d'affixe 2i transforme M en D et N en B

Déterminer les affixes respectives z_D et z_B des points D et B

- 4) a. Démontrer que K est le milieu des segments [DB] et [AC]
 - b. Calculer $\frac{z_C z_K}{z_R z_K}$. Puis en déduire la nature du quadrilatère ABCD

SITUATION PROBLEME 1; 4.5 points

M. CHINOIS possède trois terrain

Le terrain 1 a la forme telle que la représentation dans le plan complexe rapporté à un repère Orthonormé (unité graphique des axes 6cm) est un polygone dont les sommets A, B et C ont pour affixes respectives $e^{-\frac{\pi}{2}}$: 2 : -3+i

Le terrain 2 a la forme telle que dans le plan complexe rapporté à un repère orthonormé(unité graphique 6cm) est l'ensemble des points M d'affixe z tel que |iz + 1 - 3i| = 4.

Le terrain 3 a la forme d'un carré dont la longueur du coté est l'unique solution réelle de l'équation (E): $z^3 - (10 + 3i)z^2 - (2 - 30i)z + 20 = 0$ d'inconnue z = x+iy

M. CHINOIS veut clôturer ses trois terrains à l'aide d'un grillage vendu à 5000Fis les 3m

Tâches:

- Combien va-t-il dépenser pour clôturer le terrain 1
- Combien va-t-il dépenser pour clôturer le terrain 2
- 3. Combien va-t-il dépenser pour clôturer le terrain 3

- 1,5pt
- 1,5pt
- 1,5pt

SITUATION PROBLEME 2: 4.5 points

- M. Noubissi possède trois terrains dont il veut absolument cloturer car il lui est rapporté que les personnes mal intentionnées utilisent ces espaces non occupes à des mauvaises fins. M. Noubissi décide donc d'utiliser le fil barbelé vendu à 10500 FCFA le rouleau de 0,05hm.
- le premier terrain a la forme d'un rectangle dont les dimensions sont les parties réelle et imaginaire de la solution de l'équation : (1+4i)z + (3-4i)z = 4-8i, z = x+iy.
- le deuxième quant à lui est formé de tout les points M(x,y) du plan vérifiant |z-3-i|=3,
- le troisième terrain est formé de tous les points M(x,y) du plan solution de l'équation $R_e(Z)=0$ où $z'=\frac{z-4-6i}{z-2i}$. z=x+iy.

Tâche 1 : Déterminer la somme à dépenser par M. Noubissi pour clôturer le premier terrain 1,5pt Tâche 2 : Déterminer la somme à dépenser par M. Noubissi pour clôturer le deuxième terrain 1,5pt Tâche 3 : Déterminer la somme à dépenser par M. Noubissi pour clôturer le troisième terrain 1,5pt 1,5pt

« Quoi qu'il arrive dans la vie, faites toujours le bien... »