L.B.MBOUDA	EVALUATION N° 2	NOVEMBRE 2	2024	ANNEE 2024-2025
DEPARTEMENT DE MATHS	CLASSES : T ^{le} C	Durée: 4H	Coef: 7	Par M. KEUZEU ERICK
P	ARTIE A: EVALUATION DES	RESSOURCES : :	15 points	
Exercice 1 : 5points			-	
f 1 . On considère la fonction f défir	nie sur $[-1:1] \setminus \{0\}$ par f	$(x) = 1 + \frac{\sqrt{1-x^2}}{}$		
On désigne par (C) sa courbe rep		λ.		
a) Calculer les limites de f à		is interpréter les	résultats ob	tenus 0,75pt 0,5pt
b) Dresser le tableau de variation de f c) Montrer que f réalise une bijection de $]0:1[$ vers un intervalle J que l'on précisera				
d) Expliciter $f^{-1}(x)$ pour tout $x \in J$				
e) Représenter dans un repè	ère orthonormé les courb	$\operatorname{es}(C)\operatorname{de}_f\operatorname{et}(C)$	C') de f^{-1}	0,5pt
${f 2}$. Soit g la fonction définie sur ${f 0}$	- L			
a) Montrer que pour tout $x\epsilon$				0,5pt
b) Etudier le sens de variation		· L		0,5pt
c) Montrer que g réalise une	L 2L			
d) Montrer que g^{-1} est dériv	able sur K et que pour tou	$tx\in K(g^{-1})'\;($	$x) = \frac{1}{x^2 - 2x + 1}$	$\frac{1}{2}$. 1pt
Exercice 2 : 5 points				
I / 1) Montrer que les solutions da Avec $K \in \mathbb{Z}$.	ns \mathbb{Z}^2 l'équation $29x - 13$	3y = 6 (E) sont	$x = 2 + 13\lambda$	
Soit dans \mathbb{Z} l'équation $X^{19} \equiv -2[2]$	29] <i>(E'</i>)			0,75pt
2) Justifier que $2^{28} \equiv 1[29]$ et		olution de (E')		0,5pt
3) Soit X_0 une solution de (E')	·			•
a) Montrer que $X_0^{28} \equiv 1[29]$				0,25pt
b) Montrer que $X_0^{57} \equiv -8[2]$				0,75pt
c) En déduire les solutions dad) Résoudre dans Z l'équation				0,25pt 0,25pt
a) Nesodare dans 21 equation	$((x-3)^{19})^{19}$	≡ −2[29]		•
4) Déduire dans ℤ les solutions	de l'équation $\{(x-3)^{13}\}$	$\equiv -2[13]$		0, 75pt
II / 1) a) Montrer que, pour tout e	·	ou égal à 2, l'éga	alité suivante	
$PGCD(3n^3 - 11n; n + 3) =$,			0,5pt
b) Déterminer l'ensemble de	•	$3n^3-11n$		0,25pt
c) En déduire l'ensemble des	i entiers naturels n tels que	$\frac{n+3}{n+3}$ est un	n entier natu	rel 0,75pt
Exercice 3: 5,5points I – E est un espace vectoriel dont u	\vec{l}			
φ est l'endomorphisme de E tel		$-\vec{i} - \vec{k}$ of $\alpha(\vec{i})$	$(\vec{k}) = \vec{i} + \vec{k}$	
1) a) Démontrer que le systèm			ι) – ι + κ	0 Ent
b) φ est – il un isomorphisn	,	un systeme ne		0,5pt
2) Déterminer l'expression ana				0,25pt 0,25pt
3) Déterminer Ker φ et donner				0,5pt
4) Démontrer que $\left(\varphi(\vec{\imath})$, $\varphi(\vec{k})$				0,5pt
5) Démontrer que $(\overrightarrow{e_1}, \varphi(\overrightarrow{i}), \varphi(\overrightarrow{i}), \varphi(\overrightarrow{i}))$	$(p(\vec{k}))$ est une base de E.			0,5pt
Ecrira la matrica da « ralativ	,			0 Ent

0,5pt

Ecrire la matrice de φ relativement à cette base

S	oit φ l'application de $\mathbb{P}\setminus\{A\}\to\mathbb{P}$ et qui a tout point M d'affixe z associe le point M' d'affixe $z'=\frac{2iz-5}{z-2i}$	
1)	Montrer que $M' \neq A$	0,5pt
2)	Soient B et C les points d'affixes respectives $-i$ et $5i$. Montrer que B et C sont invariants par ϕ	0,5pt
3)	Montrer que si M appartient à la droite $(B\mathcal{C})$ privée de A alors son image M' par φ appartient à $(B\mathcal{C})$	0,5pt
4)	a) Montrer que pour tout nombre complexe $z \neq 2$ on a $ z' - 2i \cdot z - 2i = 9$	0,5pt
	b) En déduire que pour tout point M appartenant au cercle (Γ) de centre A et de rayon 3, le point M'	
	appartient à (Γ) .	0.5pt

PARTIE 2: EVALUATION DES COMPETENCES: 5 points

Une entreprise a des difficultés pour conserver certains de ses objets.

Le chef magasinier suggère l'utilisation des caisses de deux types.

- Les caisses de type B ayant la forme d'un pavé droit de hauteur L à base carrée de coté l où L et l sont des nombres entiers naturels non nuls tels que l < L
- Les caisses de type C de forme cubique, dont l'arête c est un entier naturel non nul.

Il suggère également les différentes façons de les ranger.

Rangement 1: Pour conserver les objets cubiques tous identiques dont l'arête a est un nombre entier non nul, on peut les ranger dans une caisse de type B de dimensions l=882 et L=945, de manière que la caisse soit complètement remplie sans laisser d'espace vide.

Rangement 2: Pour la conservation des objets cubiques dont la plus grande valeur de l'arête α est 12, on peut les ranger dans une caisse de type B dont le volume est v = 77760 de manière que la caisse soit remplie sans laisser d'espace vide.

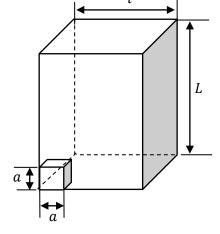
Rangement 3: Lorsque l'entreprise disposera de plusieurs caisses de type B de même volume v'=15435, on pourra les empiler verticalement dans une caisse de type C dont la plus petite arête possible est c = 105 de manière à ne laisser aucun espace vide dans la caisse C .

NB : Toutes les longueurs sont exprimées dans la même unité et on n'effectue aucune conversion pour passer aux volumes.

Tâches

- 1. Pour le rangement 1, déterminer toutes les valeurs possibles de l'arête a
- 2. Donner les dimensions possibles de la caisse B dans le rangement 2.
- **3.** Quelles sont les dimensions l et L de la caisse B dans le rangement 3 ?

Présentation :



1,5pt

1,5pt

1,5pt

O, 5pt