MINISTERE DES ENSEIGNEMENTS
SECONDAIRES
DELEGATION REGIONALE DU
LITTORAL
DELEGATION DEPARTEMENTALE DU
WOURI
COLLEGE LA PREVOYANCE
DEPARTEMENT DE PCT



## REPUBLIQUE DU CAMEROUN

Paix- Travail-Patrie

ANNEE SCOLAIRE: 2023-2024 COMPO 3<sup>e</sup> TRIM

2<sup>nde</sup> C

Durée : 2heures

Coef: 3

# **EPREUVE DE CHIMIE**

PARTIE A: EVALUATION DES SAVOIRS ET DES SAVOIR-FAIRE / 24 points

## **EXERCICE 1: EVALUATION DES SAVOIRS: 8 points**

1. Définir : doser une solution ; pH ; acide fort ; réaction exothermique

**0,5x4 pts** 

2. Citer quatre méthodes d'identification des ions

0,25x4 pts

- 3. Donner la représentation de Lewis des atomes suivants <sub>12</sub>Mg, <sub>18</sub>Ar ; préciser leur position dans le tableau de classification périodique et dire à quelle famille chacun appartient. **6x0,25pt**
- 4. Répondre par vrai ou faux

0,25x6 pts

- a. Le pH d'une solution basique dépend des ions hydroxydes
- b. L'indicateur coloré change de couleur en fonction du pH.
- c. Une solution électriquement neutre est toujours neutre
- d. On met en évidence le point équivalent grâce à un indicateur coloré.
- e. un fil de fer imbibé dans une solution de chlorure de sodium brule en produisant une coloration violette.
- f. Toutes les solutions bleues contiennent les ions cuivre(II)

#### **EXERCICE 2: APPLICATION DIRECTE DES SAVOIRS: 8 points**

- 1. Une solution aqueuse de sulfate d'aluminium est obtenue en dissolvant 1,5g de sulfate d'aluminium de formule statistique *Al*<sub>2</sub>(*SO*<sub>4</sub>)<sub>3</sub> dans 500mL d'eau distillée.
- 1.1. Ecrire l'équation de mise en solution du sulfate d'aluminium.

1pt

1.2. Déterminer la concentration molaire de cette solution.

1pt

1.3. Déduire celle de chaque ion présent en solution.

2pts

- 1.4. Un volume d'eau distillée Ve = 300mL est ajoutée à la solution précédemment préparée et on obtient une nouvelle solution.
- 1.4.1. Comment appelle-t-on cette opération?

0,5pt

1.4.2. Déterminer concertation molaire de cette nouvelle solution.

0,75x2pts

2. Le paracétamol est composé de carbone, d'hydrogène et d'oxygène. Il contient 60% de carbone;
13,3% d'hydrogène. Déterminer sa formule brute, sachant que sa masse molaire moléculaire vaut 60 g/mol.
2 pts

## **EXERCICE 3: UTILISATION DES SAVOIRS: 8 points**

- 1.On attaque 3 g de fer par 200 mL d'une solution molaire d'acide chlorhydrique. A la fin du dégagement gazeux, on constate que tout le fer a disparu.
- 1.1. Ecrire l'équation bilan de réaction qui a lieu.

1,5pt

| 1.2. Montrer que l'acide chlorhydrique est en excès.                                                                                       | 0,5pt         |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1.3.Déterminer le volume du gaz dégagé dans les conditions où le volume molaire vaut 24L/mol                                               | 0,5pt         |
| 1.4. Déterminer la concentration des ions hydroniums restants en solution et en déduire son pH.                                            | 1,5pt         |
| 2. On prépare deux solutions décimolaire en faisant barboter dans l'eau d'une part le d'hydrogène (S1) et d'autre part de l'ammoniac (S2). | chlorure      |
| 2.1. Quelle masse de chlorure d'hydrogène a-t-il fallu dissoudre dans 300ml d'eau pour obsolution S1 ?                                     | tenir la  1pt |
| 2.2. Déterminer le volume d'ammoniac à utiliser pour obtenir 250ml de solution S2.                                                         | 1pt           |
| 2.3. Quel est le PH de la solution S1 ?                                                                                                    | 1,5pt         |
| 2.4. Dire si le PH de la solution S2 est supérieur, inférieur ou égal à celui de l'eau pure.                                               | 0,5pt         |

Données (g/mol): Al: 27; Fe: 55,8; S: 32; O: 16; N: 14; H:1; Cl: 35,5

## PARTIE B: EVALUATION DES COMPETENCES / 16 points

### Situation problème:

Mme Nanfack était à la quincaillerie la semaine dernière pour acheter une solution incolore de lessive de soude qui va l'aider à dégraisser ses carreaux. Cette solution est contenue dans un bidon de 5L identique aux deux bidons dans lesquels elle met habituellement de l'eau à boire. Pour éviter la confusion, elle range le bidon dans un coin de la cuisine avant de se rendre au marché. De retour du marché ou elle a acheté des carottes et choux rouges pour sa salade, elle constate que sa fille avant d'aller à l'école a déplacée le bidon pour le ranger au même endroit que les bidons d'eau à boire. Mme Nanfack ne sait pas comment faire pour retrouver parmi ces bidons celui qui contient de la lessive de soude.

1- A l'aide d'une démarche scientifique et avec le maximum de précision possible, propose à Mme Nanfack ce qu'elle peut faire pour retrouver ce bidon de lessive de soude.

16 pts

<u>Consigne</u>: vous utiliserez des schémas illustratifs et commentés dans votre démarche.