COLLÈGE FX. VOGT		ANNEE SCOLAIRE-2023-2024
DEPARTEMENT DE CHIMIE	CONTROLE DE CHIMIE	DATE: 26 SEPTEMBRE 2023
CLASSES · Ties C C* D et D*	DURFF · 2H	CCEEFICIENT : 2

PARTIEA: EVALUATION DES RESSOURCES 12 POINTS

EXERCICE 1:

VERIFICATION DES SAVOIRS

4 POINTS

- 1.1. Définis les termes suivants : autoprotolyse de l'eau, solution saturée, solubilité et soluté. 2 pts
- 1.2. QCM : Choisis la bonne réponse

0,5*4 = 2 pts

- 1.2.1. A 333 K, le pH de l'eau pure est 6,5. Le produit ionique de l'eau pure à cette température est :
 - (A) 9.6×10^{-14} ; (B) 10×10^{-14} ; (C) 6.9×10^{-14} ; (D) 1×10^{-14}
- 1.2.2. Le pourcentage de molécules d'eau pure ionisée à 25 °C issu de l'autoprotolyse de l'eau est :
 - (A) $6.3 \times 10^{-7} \%$; (B) $7.6 \times 10^{-3} \%$; (C) $3.7 \times 10^{-6} \%$; (D) $3.6 \times 10^{-7} \%$
- 1.2.3. La dissolution dans l'eau distillée à 25 °C des cristaux l'hydroxyde d'aluminium [Al(OH)₃] conduit à une solution aqueuse centimolaire. Le pH de cette solution est : (A) 13; (B) 12,48; (C) 2; (D) 1,52
- **1.2.4.** Le produit ionique de l'eau pure à 55 °C est de 9,6×10⁻¹⁴. Le pH d'une solution acide à cette ℓ température est : **(A)** Supérieur à 6,5 ; **(B)** Egale à 6,5 ; **(C)** Inférieur à 6,5 ; **(D)** Aucune réponse n'est juste

EXERCICE 2:

APPLICATION DES SAVOIRS

4 POINTS

Dans le laboratoire de chimie du CFX VOGT, l'élève FOMO de TD a rencontré une bouteille portant une étiquette sur laquelle on peut lire : Acide chlorhydrique commercial (HCl), d = 1,2; Pourcentage en acide pur = 61 %. Elle désire préparer une solution **molaire** à partir du contenu de cette bouteille. Pour cela, elle ajoute dans une fiole jaugée de volume Vs inconnu, un volume de 190 mL d'eau distillée. Décris le mode opératoire que doit utiliser FOMO pour préparer cette solution en précisant et en dessinant les 2 verreries exactes indispensables pour cette préparation. 4 pts

EXERCICE 3:

UTILISATION DES SAVOIRS

4 POINTS

- 3.1. Dans un laboratoire où la température ambiante est de 25 °C, MAWATI mélange 200 mL d'une solution S_1 d'hydroxyde de sodium de $pH_1 = 10,7$ avec 300 mL d'une solution S_2 d'hydroxyde de sodium de pH_2 inconnu. Elle obtient un mélange dont le pH_m vaut 11,3. Détermine le pH_2 de la solution S_2 .1,5 pt
- 3.2. On dispose d'une solution (S₁) de nitrate de potassium de concentration molaire $C_1 = 0.5 \text{ mol.L}^{-1}$, d'une solution (S₂) de nitrate de calcium de concentration molaire $C_2 = 0.8 \text{ mol.L}^{-1}$, d'une solution (S₃) de chlorure de potassium de concentration molaire $C_3 = 1 \text{ mol.L}^{-1}$, et du chlorure de magnésium hexahydraté de masse m. On souhaite préparer un litre de solution (S_m) contenant les ions Mg^{2+} , Ca^{2+} , Ca^{2+}

"LE SAVOIR C'EST LE POUVOIR"

Page 1 | 2

A) NJATA élève de TC, désire préparer une solution S_4 en mélangeant à 25 °C les solutions suivantes : S_1 (20 mL de solution décimolaire d'acide chlorhydrique) ; S_2 (30 mL de solution de pH = 2 d'acide sulfurique) ; S_3 (25 mL de solution contenant 5,85 g de chlorure de sodium). L'élève SIEWE pense que la solution S_4 n'est pas neutre, tandis que NJATA estime qu'elle est électriquement neutre et les deux se mettent à discuter.

Par une démarche scientifique claire et précise, prononce-tol sur cette discussion et départage les deux élèves.

4 pts

Dans le laboratoire de chimie du collège François Xavier VOGT, les élèves MISSAMBI et NGONO de Terminale scientifique ont repéré une bouteille portant une étiquette sur laquelle on peut lire : HCl technique (S_0) à 38 %, masse volumique = 1190 kg.m⁻³. Ils décident de préparer à partir du contenu de cette bouteille, une solution finale **décimolaire** (S_2) de HCl de volume V_2 = 100 mL par l'intermédiaire d'une autre solution (S_1) de volume V_1 = 250 mL de concentration molaire 0,5 mol.L⁻¹ issu de la solution technique. NGONO estime qu'il faut prélever 10 mL pour obtenir cette solution décimolaire (S_2), tandis que MISSAMBI pense qu'il faut plutôt 20 mL et les deux se mettent à discuter.

Tu es élève en terminale scientifique prononce toi sur la démarche à suivre et départage-les. 4 pts

Données g.mol⁻¹: M(Cl) = 35,5; M(Al) = 27; M(Mg) = 24; M(Na) = 23; M(O) = 16; M(H) = 1. $K_e = 1 \times 10^{-14} \text{ à } 25 \text{ °C}$; $K_e = 9,55 \times 10^{-14} \text{ à } 60 \text{ °C}$; $\rho_{eau} = 10^{+3} \text{ g.L}^{-1}$