GENERAL CERTIFICATE OF EDUCATION BOARD

General Certificate of Education Examination

Pure Maths With Stats 2 0770/2

JUNE 2023

ADVANCED LEVEL

Subject Title	Pure Mathematics With Statistics
Paper No.	Paper 2
Subject Code No.	0770 One Tunior

THREE HOURS.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae Booklets published by the GCE Board are allowed.

In calculations, you are advised to show all the steps in your working, giving the answer at each stage.

Calculators are allowed.

Start each question on a fresh page.

Turn Over

0770/2 ©GCEB2023

(ii) The roots of the quadratic equation $3x^2 - 7x + 1 = 0$ are α and β . Find the value of the expression $\left(2\alpha + \frac{1}{\beta}\right) + \left(2\beta + \frac{1}{\alpha}\right)$. (4 mar 2. (i) Solve for x, the equation $\log_2(x - 3) + \log_2 x = 2$. (3 ma (ii) Express $f(\theta)$, where $f(\theta) = \frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta$, in the form $r\cos(\theta - \lambda)$, where $r > 0$ and λ an acute angle.			-		
Given that $(2x - 3)$ is a factor of $P(x)$. (a) factorise $P(x)$ completely. (b) solve the inequality $P(x) < 0$. (ii) The roots of the quadratic equation $3x^2 - 7x + 1 = 0$ are α and β . Find the value of the expression $(2\alpha + \frac{1}{\beta}) + (2\beta + \frac{1}{\alpha})$. (4 mar 2. (i) Solve for x, the equation $\log_2(x - 3) + \log_2 x = 2$. (3 ma (ii) Express $f(\theta)$, where $f(\theta) = \frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta$, in the form $r\cos(\theta - \lambda)$, where $r > 0$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4 + f(\theta)}$. (7 ma 3. (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x - 2}$. (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (i) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $20 = \frac{3}{25.0}$. By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constants a and (9 mar (9 mar 5. (i) Given the complex number $Z = \frac{5 + i}{2 + 3i}$. (a) express Z in the form $x + yi$ where X and y are real constants. (b) show that $Z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4}\right$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	1. (i) A polynomial P is defined on the set \mathbb{R} of real numbers by				
(a) factorise $P(x)$ completely. (b) solve the inequality $P(x) < 0$. (c) solve for x, the equation $3x^2 - 7x + 1 = 0$ are α and β . Find the value of the expression $(2\alpha + \frac{1}{\beta}) + (2\beta + \frac{1}{\alpha})$. (c) By equating the form $1 = \sqrt{2} (\cos \beta + \frac{1}{2} \sin \beta, 1$	$P(x) = 4x^3 + 4x^2 - 11x - 6.$	· - •	- 19 J. 19	at state and	
(a) factorise $P(x)$ completely. (b) solve the inequality $P(x) < 0$. (c) solve the inequality $P(x) < 0$. (c) solve the inequality $P(x) < 0$. (c) solve for x, the equation $3x^2 - 7x + 1 = 0$ are α and β . Find the value of the expression $\left(2\alpha + \frac{1}{\beta}\right) + \left(2\beta + \frac{1}{\alpha}\right)$. (c) By equating the form x + yi where $r > 0$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4+1(\alpha)}$. (c) By equating the form $r = 90$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4+1(\alpha)}$. (c) By equating the form $r = 90$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4+1(\alpha)}$. (c) monotone decreasing. (c) By equating the form $r = \frac{5+i}{2+3i}$. (c) By equating the form $r + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4}\right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (c) By equating the form in (a) to that in (b) show that $\cos \frac$					
(ii) The roots of the quadratic equation $3x^2 - 7x + 1 = 0$ are α and β . Find the value of the expression $(2\alpha + \frac{1}{\beta}) + (2\beta + \frac{1}{\alpha})$. (4 mar 2. (i) Solve for x, the equation $\log_2(x - 3) + \log_2 x = 2$. (3 ma (ii) Express $f(\theta)$, where $f(\theta) = \frac{\sqrt{3}}{2} \cos \theta + \frac{1}{2} \sin \theta$, in the form $r\cos(\theta - \lambda)$, where $r > 0$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4+f(\theta)}$. (7 ma 3. (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x-2}$. (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar 4. The table below shows corresponding values of x and y which approximately satisfy a relation of the form $y = ax^2 + bx$, $\boxed{\frac{x}{2} \cdot 20}{28.0} \frac{2.5}{31.3} \frac{3.0}{33.0} \frac{3.5}{33.3} \frac{4.0}{32.0} \frac{4.5}{29.3} \frac{5.0}{25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constsnts a and (9 mar 5. (i) Given the complex number $Z = \frac{5+i}{2+3i}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} (\cos \frac{\pi}{4} - i \sin \frac{\pi}{4})$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).					
Find the value of the expression $\left(2\alpha + \frac{1}{\beta}\right) + \left(2\beta + \frac{1}{\alpha}\right)$. (4 mar (4 mar 2. (i) Solve for x, the equation $\log_2(x - 3) + \log_2 x = 2$. (3 ma (ii) Express $f(\theta)$, where $f(\theta) = \frac{\sqrt{3}}{2} \cos \theta + \frac{1}{2} \sin \theta$, in the form $r\cos(\theta - \lambda)$, where $r > 0$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4+f(\theta)}$. (7 ma (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x-2}$. (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 mar (ii) Find the range of real values of the function $y = \frac{4x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (iii) Find the range of real values of the function $y = \frac{4x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. The table below show's corresponding values of x and y which approximately satisfy a relation of the form $y = ax^2 + bx$, $\boxed{\frac{x}{2.0} 2.5 3.0 3.5 4.0 4.5 5.0}{\frac{y}{2.8.0} 31.3 33.0 33.3 32.0 29.3 25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constants a and (9 mar) (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4}\right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	• • •	• • • 4		(5	, 3 mark
2. (i) Solve for x, the equation $\log_2(x-3) + \log_2 x = 2$. (3 ma (ii) Express $f(\theta)$, where $f(\theta) = \frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta$, in the form $r\cos(\theta - \lambda)$, where $r > 0$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4+f(\theta)}$. (7 ma 6. (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x-2}$. (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-2}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-2}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-2}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-2}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-2}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-2}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (iii) Find the range of real values of the function $y = \frac{3x^2}{4x-2}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-2}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (iii) Find the range of real values of the constants $y = ax^2 + bx$, $\frac{x}{2.0 \ 2.0 \ 31.3 \ 33.0 \ 33.3 \ 32.0 \ 29.3 \ 25.0 \ 20.3 \ 25.0 \ 31.3 \ 30.0 \ 33.3 \ 32.0 \ 29.3 \ 25.0 \ 20.3 \ 25.0 \ 31.3 \ 30.0 \ 33.3 \ 32.0 \ 29.3 \ 25.0 \ 20.3 \ 25.0 \ 31.3 \ 20.5 $	(ii) The roots of the quadratic equation $3x^2 - 7x + 1 = 0$ are	α and β .	$_{\rm c}$ $=$ $E_{\rm c}$		
2. (i) Solve for x, the equation $\log_2(x-3) + \log_2 x = 2$. (3 ma (ii) Express $f(\theta)$, where $f(\theta) = \frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta$, in the form $r\cos(\theta - \lambda)$, where $r > 0$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4+f(\theta)}$. (7 ma 6. (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x-2}$. (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (i) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the constants a and y which approximately satisfy a relation of the form $y = ax^2 + bx$, (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form $x + y$ is where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 man (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	Find the value of the expression $\left(2\alpha + \frac{1}{\alpha}\right) + \left(2\beta + \frac{1}{\alpha}\right)$.			· ` > >* == ((4 marks
(ii) Express $f(\theta)$, where $f(\theta) = \frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta$, in the form $r\cos(\theta - \lambda)$, where $r > 0$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4+f(\theta)}$. (7 ma (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x-2}$. (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (iii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (i) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (a) The table below shows corresponding values of x and y which approximately satisfy a relation of the form $y = ax^2 + bx$, (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	(β) (α)				•
(ii) Express $f(\theta)$, where $f(\theta) = \frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta$, in the form $r\cos(\theta - \lambda)$, where $r > 0$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4+f(\theta)}$. (7 ma (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x-2}$. (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (iii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (i) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar 5. (i) Given the complex number $Z = \frac{5}{5} + \frac{i}{2}$, $Z = \frac{5}{3.0} - \frac{3.0}{33.3} - \frac{3.5}{32.0} - \frac{4.0}{29.3} - \frac{5.0}{25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constants a and (9 mar) (9 mar) (1) Given the complex number $Z = \frac{5}{2} + \frac{i}{4}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right)$. (c) By equating the form in (a) to that in (b) show that $\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	2. (i) Solve for x, the equation $\log_2(x-3) + \log_2 x = 2$.			<u> </u>	(3 mark
$f(\theta) = \frac{\sqrt{3}}{2} \cos \theta + \frac{1}{2} \sin \theta,$ in the form $r\cos(\theta - \lambda)$, where $r > 0$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4 + f(\theta)}$. (7 ma 6. (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x-2}$. (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}, x \in \mathbb{R}, x \neq \frac{1}{4}$. (3 man (iii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}, x \in \mathbb{R}, x \neq \frac{1}{4}$. (3 man (iii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}, x \in \mathbb{R}, x \neq \frac{1}{4}$. (a) State the domain of f. Show that f is (b) nipective, (c) monotone decreasing. (1, 3, 3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}, x \in \mathbb{R}, x \neq \frac{1}{4}$. (3 man (iii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}, x \in \mathbb{R}, x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}, x \in \mathbb{R}, x \neq \frac{1}{4}$. (5 (i) Given the complex number $Z = \frac{5 + i}{2 + 3i}$, (a) express Z in the form $x + y$ i where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 man (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	· · · · · · · · · · · · · · · · · · ·				
in the form $r\cos(\theta - \lambda)$, where $r > 0$ and λ an acute angle. Hence find the maximum value of the expression $\frac{2}{4 + f(\theta)}$. (7 ma 3. (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x-2}$. (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 mathef{3}, 3 mathe					
Hence find the maximum value of the expression $\frac{2}{4+f(\theta)}$. (7 ma 6. (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x-2}$. (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 mar (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}, x \in \mathbb{R}, x \neq \frac{1}{4}$. (3 mar 4. The table below shows corresponding values of x and y which approximately satisfy a relation of the form $y = ax^2 + bx$, $\boxed{\frac{x}{2.0} 2.5 3.0 3.5 4.0 4.5 5.0 y}{28.0 31.3 33.0 33.3 32.0 29.3 25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constsnts a and (9 mar 5. (i) Given the complex number $Z = \frac{5+i}{2+3i}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).		le.			
3. (i) A function f is defined on \mathbb{R} by $f(x) = \frac{3x}{5x-2}$ (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (iii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (i) The table below shows corresponding values of x and y which approximately satisfy a relation of the form $y = ax^2 + bx$, $\frac{x}{2.0}$, $\frac{2.5}{3.0}$, $\frac{3.5}{31.3}$, $\frac{4.0}{33.3}$, $\frac{4.5}{25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the conststs a and (9 man (9 man) 5. (i) Given the complex number $Z = \frac{5+i}{2+3i}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	2				(7 marks
$f(x) = \frac{3x}{5x-2},$ (a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (1, 3, 3 main (ii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}, x \in \mathbb{R}, x \neq \frac{1}{4}.$ (3 main (iii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}, x \in \mathbb{R}, x \neq \frac{1}{4}.$ (3 main (iii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}, x \in \mathbb{R}, x \neq \frac{1}{4}.$ (3 main (iii) Find the range of real values of the function $y = \frac{3x^2}{4x-1}, x \in \mathbb{R}, x \neq \frac{1}{4}.$ (5 (i) Given the complex number $Z = \frac{5+i}{2+3i},$ (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right).$ (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}.$ (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	$4+f(\theta)$			•	
(a) State the domain of f. Show that f is (b) injective, (c) monotone decreasing. (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (iii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (iii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (iii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (3 mar (3 mar (3 mar) (3 mar) (3 mar) (4. The table below shows corresponding values of x and y which approximately satisfy a relation of the form $y = ax^2 + bx$, (3 mar) (3 mar) (3 mar) (3 mar) (4. The table below shows corresponding values of x and y which approximately satisfy a relation of the form $y = ax^2 + bx$, (3 mar) (5 (i) Given the complex number $Z = \frac{5 + i}{2 + 3i}$, (a) express Z in the form $x + y$ iwhere x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar) (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).				• ,	
Show that f is (b) injective, (c) monotone decreasing. (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (iii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 mar (i) The table below shows corresponding values of x and y which approximately satisfy a relation of the form $y = ax^2 + bx$, $\frac{x}{2.0}$ $\frac{2.5}{3.0}$ $\frac{3.5}{3.3}$ $\frac{4.0}{32.0}$ $\frac{4.5}{29.3}$ $\frac{5.0}{25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the conststst a and (9 mar (9 mar) 5. (i) Given the complex number $Z = \frac{5 + i}{2 + 3i}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	5× L				
(b) injective, (c) monotone decreasing. (1, 3, 3 man (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 man (3 man (1, 3, 3 man (3 man (3 man (3 man (1) State (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				· .	
(c) monotone decreasing. (1, 3, 3 matrix (ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 matrix (3 matrix (
(ii) Find the range of real values of the function $y = \frac{3x^2}{4x - 1}$, $x \in \mathbb{R}$, $x \neq \frac{1}{4}$. (3 matrix 1. The table below shows corresponding values of x and y which approximately satisfy a relation of the form $y = ax^2 + bx$, x 2.0 2.5 3.0 3.5 4.0 4.5 5.0 2.5				(1.3	3 marks
4. The table below shows corresponding values of x and y which approximately satisfy a relation of the form $y = ax^{2} + bx ,$ $\boxed{x 2.0 2.5 3.0 3.5 4.0 4.5 5.0 \\ \hline y 28.0 31.3 33.0 33.3 32.0 29.3 25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constsnts <i>a</i> and (9 matrix) 5. (i) Given the complex number $Z = \frac{5 + i}{2 + 3i}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 marreliant (3, 2).	(c) monotone decreasing.			(1, 3,	J mai Ka
4. The table below shows corresponding values of x and y which approximately satisfy a relation of the form $y = ax^{2} + bx ,$ $\boxed{x 2.0 2.5 3.0 3.5 4.0 4.5 5.0 \\ y 28.0 31.3 33.0 33.3 32.0 29.3 25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constsnts <i>a</i> and (9 matrix) 5. (i) Given the complex number $Z = \frac{5 + i}{2 + 3i}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 marreliant (3, 2).	(ii) Find the range of real values of the function $x = \frac{3x^2}{x}$				a marks
$y = ax^{2} + bx,$ $\boxed{x 2.0 2.5 3.0 3.5 4.0 4.5 5.0 \\ y 28.0 31.3 33.0 33.3 32.0 29.3 25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constants <i>a</i> and (9 mar) (9 mar) 5. (i) Given the complex number $Z = \frac{5 + i}{2 + 3i},$ (a) express <i>Z</i> in the form $x + yi$ where <i>x</i> and <i>y</i> are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right).$ (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}.$ (3, 4, 2 mar) (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	(ii) Find the range of real values of the function $y = \frac{1}{4x - 1}$, $x \in \frac{1}{2}$	$\mathbb{K}, \mathcal{X} \neq \frac{1}{4}$			Jillarks
$y = ax^{2} + bx,$ $\boxed{x 2.0 2.5 3.0 3.5 4.0 4.5 5.0 \\ y 28.0 31.3 33.0 33.3 32.0 29.3 25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constants <i>a</i> and (9 mar) (9 mar) 5. (i) Given the complex number $Z = \frac{5 + i}{2 + 3i},$ (a) express <i>Z</i> in the form $x + yi$ where <i>x</i> and <i>y</i> are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right).$ (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}.$ (3, 4, 2 mar) (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).					
$y = ax^{2} + bx,$ $\boxed{x 2.0 2.5 3.0 3.5 4.0 4.5 5.0 \\ y 28.0 31.3 33.0 33.3 32.0 29.3 25.0}$ By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constsnts <i>a</i> and (9 mar) (9 mar) 5. (i) Given the complex number $Z = \frac{5 + i}{2 + 3i},$ (a) express <i>Z</i> in the form $x + yi$ where <i>x</i> and <i>y</i> are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right).$ (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}.$ (3, 4, 2 mar) (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	I. The table below shows corresponding values of x and y which a	pproximately	satisfy a relat	ion of the for	m
x2.02.53.03.54.04.55.0y28.031.333.033.332.029.325.0By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constsnts a and (9 mar5. (i) Given the complex number $Z = \frac{5 + i}{2 + 3i}$,(a) express Z in the form $x + yi$ where x and y are real constants.(b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$.(c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$.(3, 4, 2 mar(ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).			•		
y28.031.333.033.332.029.325.0By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constants a and (9 mar5. (i) Given the complex number $Z = \frac{5 + i}{2 + 3i}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$.(3, 4, 2 mar(ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).(3, 4, 2).	$y=ax^2+bx,$	•			
By drawing a suitable linear graph, determine, correct to one decimal place, the values of the constsnts <i>a</i> and (9 mar 5. (i) Given the complex number $Z = \frac{5+i}{2+3i}$, (a) express <i>Z</i> in the form $x + yi$ where <i>x</i> and <i>y</i> are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).] *
5. (i) Given the complex number $Z = \frac{5+i}{2+3i}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2). (3, 4, 2 mark)	<u>y</u> 28.0 31.3 33.0 33.3	32.0	29.3	25.0	
(9 mar 5. (i) Given the complex number $Z = \frac{5+i}{2+3i}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	De deserie e e siteble lie en en els determine servette en de				a and b
5. (i) Given the complex number $Z = \frac{5+i}{2+3i}$, (a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	By drawing a suitable linear graph, determine, correct to one de	cimai piace, ti	le values of tr		
(a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2). (3, 4, 2 marking the point (3, 2).				(> maria
(a) express Z in the form $x + yi$ where x and y are real constants. (b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2). (3, 4, 2 marking the point (3, 2).	5 (i) Given the complex number $Z = \frac{5+i}{2}$				
(b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$. (c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).					
(c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).		stants.			
(c) By equating the form in (a) to that in (b) show that $\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$. (3, 4, 2 mar (ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).	(b) show that $z = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right)$.				
(ii) The line $y = 3 - 2x$ is a tangent to a circle whose centre is at the point (3, 2).		$0s\frac{\pi}{2}-\frac{1}{2}$		(3 /	marke
		· • • •	2)	(3, 4, 4	s mains
(3 mar.		at the point (3	5, Z).		2 montes
•	rind the equation of this circle.			(.	5 marks)
	· · · · · · · · · · · · · · · · · · ·				
		•	,	1	

2

.

~84120-842424

ŝ

6. (i) The equation of a curve C, is given by

$$y = \frac{x}{3}(x^2 - 4).$$

Find.

- (a) $\frac{dy}{dx}$ at the point P(-1, 1),
- (b) the equation of the tangent T, to C at the point P(-1, 1),
- (c) the coordinates of the point Q, where the tangent T meets C again.
- (ii) Given that $f(x) = \frac{3x}{(x-1)(x+2)}$, $x \in \mathbb{R} \{-2, 1\}$, (d) express f(x) into partial fractions. (e) find $\int f(x) dx$.

7. (i) Evaluate

equation.

 $\sum_{r=1}^{\infty} (3r+1)$

(ii) A class of 9 students and a teacher is out on a field trip. On arrival at a car park they found out that there is only one taxi available to take them to their destination. Given that the taxi can carry only four passengers, find the number of ways that the 6 who will treck can be selected if:

(a) the teacher must go by taxi,

(b) the teacher will not go by taxi.

- 8. (i) Taking x = -0.8 as the first approximation to a root of the equation $e^x - \ln(1 + x^2) = 0$, use the Newton-Raphson method to find, to three decimal places, a second approximation to the root of the
 - (ii) Prove, by Mathematical induction, that $3^n + 1$ is even for all positive integral values of n. (5 marks)

9. (i) Given the plane Π ; x - 2y - z = 4 and the line L: $\frac{x - 2}{3} = \frac{y + 4}{1} = \frac{z - 1}{-1}$, find,

(a) the sine of the acute angle between Π and L,

- (b) the vector equation of the plane which is normal to the L and contains the point (2, 3, 1). (3, 3 marks)
- (ii) A linear transformation of points in 3- dimensional space is defined by the matrix **M**, where

$$\mathbf{M} = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Under this transformation, find the image of the points on the line

$$\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{-1}.$$

10. (i) Given that

$$2y = x^2 + \sin y,$$

show that $(\cos y - 2)\frac{d^2y}{d^2} - (\sin y)\left(\frac{dy}{d^2}\right)^2 + 2$

$$\tan(\cos y - 2)\frac{d^2y}{dx^2} - (\sin y)\left(\frac{dy}{dx}\right)^2 + 2 = 0.$$

(ii) A function h: $\mathbb{R} - \{-2\} \rightarrow \mathbb{R}$ is defined by

$$h(x) = \frac{x}{x+2}.$$

Sketch the curve y = h(x).

23/0770/2

(5 marks)

(3 marks)

(4 marks)

(2, 2, 3 marks)

(6 marks)

(3 marks)

(3, 3 marks)

(5 marks)

3