

Année scolaire 2022-2023

Série: TI Session: mai 2023

Durée: 3 h

Département de MATHEMATIQUES

e-mail:mail:collegevogt@yahoo.fr

PROBATOIRE BLANC No: 2

15 points

PARTIE A: ÉVALUATION DES RESSOURCES

Exercice 1: 4 points

I. Un tournoi de judo regroupe 5 compétiteurs. Chaque compétiteur doit affronter tous les autres.

1. Déterminer le nombre total de rencontres de ce tournoi.

0.5pt

2. a) Construire un graphe représentant toutes les rencontres possibles.

0.75pt

b) Ce graphe est-il complet ? Justifier.

0.5pt

II. Dans le plan orienté on considère le carré ABCD de sens direct, de centre O et de côté une unité (prendre comme unité 4cm). Soit G le barycentre des points pondérés (A; 1); (B; 2) et (C; 1).

1. a) Montrer que G est le milieu du segment [OB].

0.5pt

b) construire le point G.

0.25pt

2. On considère l'ensemble (Γ) des points M du plan tel que $MA^2 + 2MB^2 + MC^2 = 6$.

a) Démontrer que $MA^2 + 2MB^2 + MC^2 = 4MG^2 + \frac{3}{2}$

0.75pt

b) En déduire la nature précise de (Γ) .

0.75pt

Exercice 2:3 points

I. a est un entier naturel supérieur à 2. Donner en base a l'écriture du nombre $(a + 1)^2$.

0.5pt

II. On considère l'espace vectoriel \mathbb{R}^3 sur \mathbb{R} . Soit F un sous ensemble de \mathbb{R}^3 défini par $F = \{(x; y, z) \in \mathbb{R}^3 / 2x - y + z = 0\}$. on considère les vecteurs $\vec{a}(1; 2; 0)$; $\vec{b}(0; 1; 1)$

1. Montrer que F est une sous espace vectoriel de \mathbb{R}^3

1pt

2. Montrer que la famille $(\vec{a}; \vec{b})$ engendre F.

0.5pt

3. Montrer que la famille $(\vec{a}; \vec{b})$ est libre

0.5pt

4. En déduire que la famille $(\vec{a}; \vec{b})$ une base de F

0.5pt

@_N.S.A

Exercice 3:8 points

Le plan est muni d'un repère orthonormé (0, I, J).

- I. On lance trois fois de suite un dé tétraédrique donc les faces sont marquées 1, -1, 0 et -2. On note a le numéro obtenu au premier lancer, b celui obtenu au second lancer et c le numéro obtenu au troisième lancer. On considère la fonction numérique g définie pour tout x différent de -1 par $g(x) = \frac{ax^2 + bx + c}{x+1}$.
- 1. Déterminer le nombre total de triplets (a, b, c) que l'on peut ainsi obtenir.
- 2. Déterminer le nombre de triplets (a, b, c) tel que g soit une fonction homographique. **1pt**
- II. Soit la fonction numérique f définie sur $D = \mathbb{R} \setminus \{-1\}$ par $f(x) = \frac{x^2 2x + 1}{x + 1}$. On note (Γ) sa courbe representative dans le repère orthonormé (0, I, J).
- 1. Calculer les limites aux bornes de D et en déduire que (Γ) admet une asymptote (Δ) dont on donnera une équation. **1.25pt**
- 2. Déterminer trois réels α , β et γ tels que pour tout $x \in D$, $f(x) = \alpha x + \beta + \frac{\gamma}{x+1}$. **0.75pt**

b) Étudier les positions relatives de (Γ) et (L).

0.5pt

4. a) Calculer la dérivée f' de f sur D et étudier son signe.

1pt

b) Dresser le tableau des variations de f.

0.75pt

5. a) Tracer la courbe de f ainsi que ses asymptotes.

1pt

b) Déterminer suivant les valeurs du nombre réel k, le nombre et le signe des solutions de l'équation f(x) = k. **0.75pt**

PARTIE B: ÉVALUATION DES COMPETENCES

4,5 points

SITUATION:

Chaque année au mois d'avril, une entreprise citoyenne à travers ses employés organise des visites de donation dans un orphelinat, un centre de personnes handicapées et un centre d'accueil et d'observation des enfants de la rue. Pour la visite du mois d'avril 2023, le responsable des affaires sociales de cette entreprise a repartit tous les employés en trois catégories distinctes selon leurs revenus mensuels. Le tableau suivant donne en FCFA, la contribution de chaque employé par lieu de visite en fonction de la catégorie.

Lieu de visite	Contribution par employé		
	Catégorie 1	Catégorie 2	Catégorie 3
Orphelinat	4 500	7 500	12 000
Centre de personnes	7 000	10 000	16 000
handicapées			
Centre d'accueil et	3 500	4 500	6 000
d'observation			

Pour les donations, il faut remettre un don d'une valeur de : 546 000 FCFA à l'orphelinat, 770 000 FCFA au centre de personnes handicapées et 342 000 FCFA pour le centre d'accueil et d'observation des enfants de la rue.

Le premier janvier 2016, monsieur YONTA et madame XANG sont recrutés dans cette entreprise citoyenne à l'indice respectif Y_0 et X_0 . Avec $Y_0 = X_0 = 460$. Dans le salaire brut d'un employé, un point d'indice dans cette entreprise vaut 750 FCFA. Chaque année, à cause de la spécificité du poste occupé, l'indice de monsieur YONTA augmente de 90 points tandis que celui de madame XANG augmente de 10% par rapport à l'année précédente.

Grace à ces économies, monsieur YONTA voudrait s'acheter un terrain. La parcelle que lui propose un agent immobilier à la forme d'un quadrilatère. Le géomètre affirme que les sommets de ce quadrilatère sont les images des solutions sur un cercle trigonométrique d'unité 3 dam de l'équation $4sin^2(x) + 2(\sqrt{2} - \sqrt{3})sin(x) - \sqrt{6} = 0$ sur $[0; 2\pi[$. Le mètre carré est vendu à 2 500 FCFA. Prendre $\sqrt{3} = 1,73$ $\sqrt{2} = 1,41$.

TÂCHES

- 1. Déterminer le salaire mensuel brut de monsieur YONTA et madame XANG dès la fin du mois de janvier 2023. **1.5pt**
- 2. Déterminer le nombre d'employés de cette entreprise.
- 3. Déterminer le montant d'argent que devra débourser monsieur YONTA pour l'achat de ce terrain.

 1.5pt

Présentation: 0,5 point

1.5pt