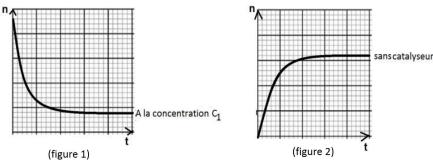
| Ministère des Enseignements Secondaires    | BACCALAUREAT BLANC REGIONAL |            |           |
|--------------------------------------------|-----------------------------|------------|-----------|
| Délégation Régionale du Centre             | EPREUVE DE CHIMIE PRATIQUE  |            |           |
| Inspection Régionale de Pédagogie Sciences | Série: C/D                  | Durée: 1 h | Coef: 0,5 |

## Partie 1:10 points

1. Définir les termes : Dilution ; Point de demi-équivalence.


1x2pt

2. Donner la signification de chacun des pictogrammes ci-dessous :

0.5x3pt



3. Soient les courbes ci-dessous :



- 3.1 La courbe de la figure 1 ci-dessus traduit la vitesse de disparition d'un réactif aucours du temps. La réaction a lieu lorsque la concentration du réactif vaut C<sub>1</sub>. Sans soucis d'échèlle, représenter sur la meme figure 1(voir document à remettre avec sa copie), la courbe de disparition du meme réactif si la réaction a lieu à une concentration C<sub>2</sub> tel que (C<sub>2</sub> < C<sub>1</sub>).
  1pt
- 3.2 La courbe de la figure 2 ci-dessus traduit la vitesse de formation d'un produit aucours du temps. La réaction a lieu en absence de catalyseur. Sans soucis d'échèlle, représenter sur la meme figure 2 (voir document à remettre avec sa copie), la courbe de formation du meme produit si la réaction a lieu en présence d'un catalyseur.
- 4. Un élève prépare 100 ml d'une solution d'acide lactique  $CH_3 CHOH COOH$  en diluant un échantillon de 10 ml de cette acide dans l'eau pure ;Ensuite, il dose les 10 ml de cette solution par une solution d'hydroxyde de sodium (Na<sup>+</sup> + HO<sup>-</sup>), l'équivalence est repéré par un changement de couleur de l'indicateur coloré adéquat.
- 4.1 Nommer la verrerie principale, utilisée pour réaliser cette dilution et faire son schéma.
- 1pt 2pt

4.2 Décrire le mode opératoire de cet opération de dilution.

- 0,75pt
- 4.3 Pourquoi est-il conseillé de faire plusieurs essais de dosage pour déterminer le point d'équivalence?
- 0,75

4.4 Expliquer pourquoi l'ajout de l'eau dans la solution d'acide ne perturbe pas le dosage.

0,75pt

## Partie 2: 10 points

Au cours d'une séance de travaux partiques, dans le but d'identifier un acide AH, on réalise le dosage pH-métrique d'un volume  $V_a = 20$  ml de solution aqueuse de cet acide par une solution d'hydroxyde de sodium (Na<sup>+</sup> + HO<sup>-</sup>), de concentration  $C_b$ . La courbe pH = f ( $V_b$ ) qui traduit la variation du pH du mélange en fonction de  $V_b$ , est donnée cidessous sur le document à remettre avec sa copie, ainsi que le schéma du dispositif expérimental utilisé.

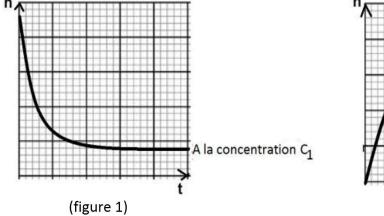
Toutes les solutions sont prises à  $25^{\circ}$ C ou Ke =  $10^{-14}$ .

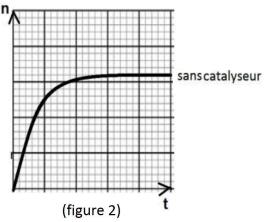
1. Nommer les différentes parties désignées par les lettres de ce dispositif.

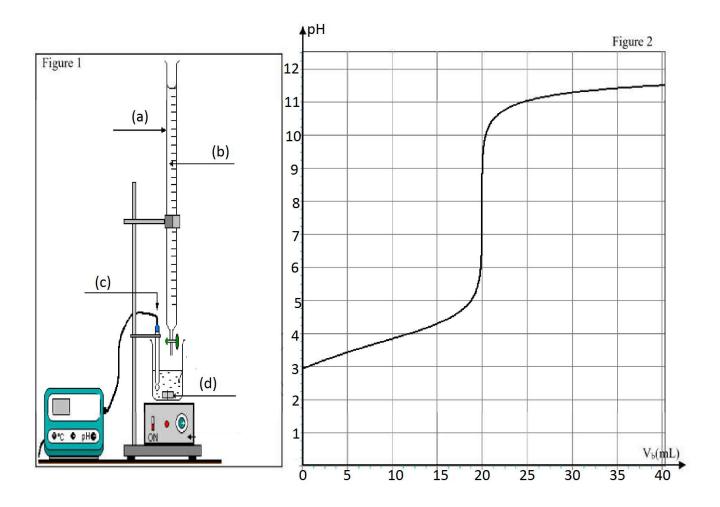
0,75x4pt

2. Déterminer les coordonnées du point d'équivalence.

2pt


3. Déterminer le pH du mélange à la demi-équivalence et identifier l'acide AH. On donne le tableau de pKa ci-dessous :


2pt


| Couple acide-base | NH <sub>4</sub> <sup>+</sup> /NH <sub>3</sub> | HCOOH/HCOO- | C <sub>6</sub> H <sub>5</sub> COOH/C <sub>6</sub> H <sub>5</sub> COO | CH <sub>3</sub> NH <sub>3</sub> <sup>+</sup> / CH <sub>3</sub> NH <sub>2</sub> |
|-------------------|-----------------------------------------------|-------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|
| рКа               | 9,2                                           | 3,8         | 4,2                                                                  | 10,7                                                                           |

- 4. En exploitant la valeur du pH initial de la solution, calculer la concentration C<sub>a</sub> de la solution aqueuse de AH. 2pt
- 5. En supposant que l'acide est HCOOH, écrire l'équation-bilan de la réaction de dosage qui a lieu.

l pí





