DELEGATION REGIONALE DU CENTRE INSPECTION SCIENCES SECTION PCT

SPECIALITE:

REPUBLIQUE DU CAMEROUN Paix-Travail-Patrie

CORRIGÉ REGIONAL HARMONISÉ

EXAMEN: BACCALAUREAT BLANC MATIERE: **CHIMIE THEORIQUE**

C, D et E

DUREE:

2023 3 heures

COEFFICIENT: 1,5/2

PARTIE 1 : ÉVALUATION DES RESSOURCES

24 POINTS

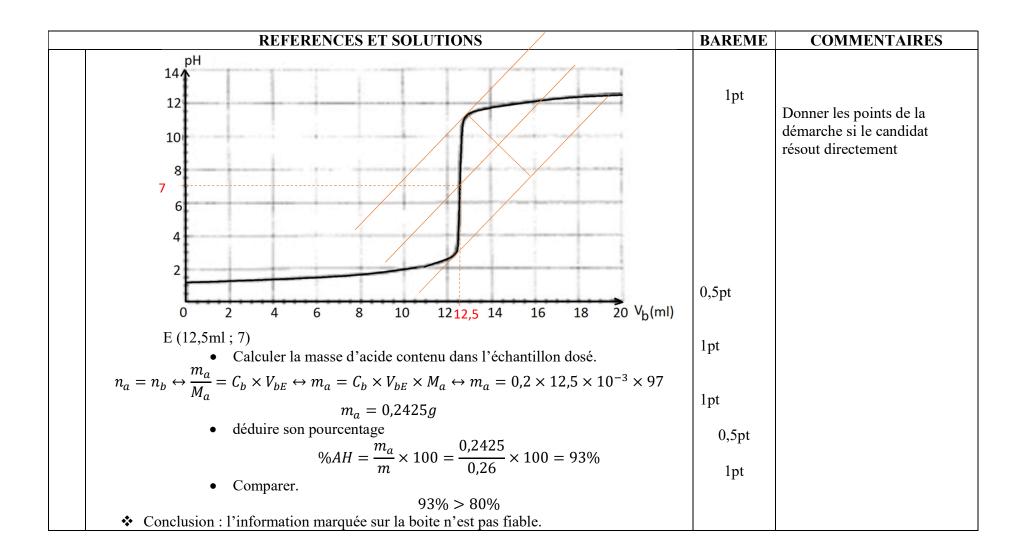
SESSION:

	REFERENCES ET SOLUTIONS	BAREME	COMMENTAIRES		
EX	EXERCICE 1: VERIFICATION DES SAVOIRS 8Pt				
1	Catalyse homogène : catalyse au cours de laquelle le catalyseur et le réactif sont dans le	1 pt x 2	Accepter composé qui réagit		
	même état physique.		totalement avec l'eau en		
	Monobase forte : composé qui réagit totalement avec l'eau en fixant un proton.		libérant un ion hydroxyde.		
2	b) Une solution tampon	1 pt			
3	b) D'un sel d'ammonium quaternaire	1 pt			
4	vrai	1pt			
5	faux	1pt			
6	b) la trempe de prise d'essai	1pt			
7	a) Nucléophile	1pt			
	EXERCICE 2 : APPLICATION DES SAVOIRS	8pt			
	PARTIE A : / ÉNERGIE MÉCANIQUE / 4 Pt	-			
1	$(C_2H_5)_3N + CH_3 - Cl \rightarrow (C_2H_5)_3N^+CH_3 + Cl^-$		Accepter		
		1 pt	$(C_2H_5)_3N^+CH_3$, Cl^-		
2	$n(H_3O^+)_1 = [(H_3O^+)]_1 \times V = 1.3 \times 10^{-3} \times 0.2 = 2.6 \times 10^{-4} \text{mol}$	0,5pt x 2			
2.1	$n(H_3O^+)_2 = [(H_3O^+)]_2 \times V = 1.0 \times 10^{-2} \times 0.2 = 2.0 \times 10^{-3} mol$				
2.2	$n_{A1} = n_{A2} = C_0 \times V = 0.01 \times 0.2 = 2.0 \times 10^{-3} mol$	1pt			
2.3	L'acide fort est HA_2 car $n(H_3O^+)_2 = n_{A2}$	0,5pt x 2			
3	,				
3.1	Solution tampon	1pt			
3.2	Son pH varie peu par dilution modérée	0,5pt	Accepter toute formulation		
		_	juste		

BACCALAUREAT BLANC

Epreuve de Chimie C, D et E

session 2023


Corrigé régional harmonisé

1/5

	REFERENCES ET SOLUTIONS	BAREME	COMMENTAIRES
3.3	$\begin{cases} C_B V_B = \frac{1}{2} C_A V_A & \leftrightarrow V_A = 0.1L = 100 \text{mL et } V_B = 0.05L = 50 \text{mL} \\ V_A + V_B = 0.15 \end{cases}$	0,5 pt x 3	
4	La molécule OH H possèdent 4 énantiomères car elle renferme 2 carbones asymétriques.	0,5 pt x 2	
	EXERCICE 3: UTILISATION DES SAVOIRS: 8 I	ot	
1	Le chauffage à reflux permet d'éviter les pertes de réactifs	1pt	
2	0,3 0,2 0,1 (1) (1) Figure 1:	1pt	
	On note que $\tau_1 = 8 \min et \tau_2 = 2 \min$. La réaction la plus rapide est la deuxième car $\tau_2 = 2 \min < \tau_1 = 8 \min$	0,5 pt x 2 0,5 pt x 2	

	REFERENCES ET SOLUTIONS	BAREME	COMMENTAIRES
3	$Rd_1 \times n_{al1} = n_{es1} \leftrightarrow Rd_1 = \frac{n_{es1}}{n_{al1}} \leftrightarrow Rd_1 = \frac{0,2}{0,3} = 0,67$ $Rd_2 \times n_{al2} = n_{es2} \leftrightarrow Rd_2 = \frac{n_{es2}}{n_{al2}} \leftrightarrow Rd_2 = \frac{0,3}{0,3} = 1$ La réaction totale est la réaction 2 car $Rd_2 = 100\% = 1$	1pt 1pt 1pt	Accepter $Rd_1 = 67\%$ et $Rd_2 = 100\%$
4	$CH_3CH_2CH_2COOCCH_2CH_3 + CH_3CH_2OH \to CH_3CH_2CH_2COOCH_2CH_3 + CH_3CH_2CH_2COOH$	1pt	
	PARTIE 2: ÉVALUATION DES COMPÉTENCES 16Pt		
1	Problème scientifique : donner le protocole du dosage pH-métrique	2pt	
	❖ Démarche à suivre:		
	 Faire le schema du dispositif expérimental. Donner le mode opératoire. Résolution 	1pt	
	Dispositif expérimental		
	Burette contenant la solution de NaOH électrodes potence pH-mètre Bécher contenant le détartrant	2pt	
	Support Barreau almanté Agitateur magnétique		Donner les points de la
	Mode opératoire.		démarche si le candidat
	- Prélever 0,26 g de détartrant l'introduire dans le bécher et la dissoudre totalement avec		résout directement
	de l'eau distillée.		

	REFERENCES ET SOLUTIONS	BAREME	COMMENTAIRES
-	Introduire les électrodes du pH-mètre dans le becher.		
-	Remplir la burette avec la solution d'hydroxyde de sodium		
-	Verser de petites quantités de base dans le becher et noter à chaque fois la valeur du pH	3pt	
	de la solution, et compiler tous les résultats obtenus dans un tableau.		
2	 Problème scientifique : Déterminer le pourcentage d'acide sulfamique contenu dans le détartrant. Démarche à suivre: 	1pt	
	 Écrire l'équation bilan de la réaction ayant lieu. Exploiter la courbe àfin de déterminer les coordonées du point d'équivalence. Calculer la masse d'acide contenu dans l'échantillon dosé et en déduire 	1pt	
*	son pourcentage. • Comparer. • Résolution: • Equation bilan de la réaction ayant lieu: $AH + HO^- \rightarrow A^- + H_2O$ • Déterminer les coordonées du point d'équivalence.	1pt	

Yaoundé, le 02 mai 2023