Lycée Bilingue de Figuil									
Département de Mathématiques									
Evaluation n° 3	Classe : Tle D	Année scolaire : 2022/2023	Data - 24/01/2022						
Epreuve de Mathématiques	Durée : 4H	Coef: 4	Date: 24/01/2023						

Partie A/Evaluation des ressources/15,5pts

Exercice 1/5pts

I/ ABC est un triangle équilatéral direct de centre de gravité G. Le point I est le milieu du segment [AB]. S est la similitude directe de centre A qui transforme G en C; S' est la similitude directe de centre I qui transforme A en C.

Déterminer le rapport et l'angle de chacune des similitudes S et S'.

2pts

II/ On considère la transformation f_1 de P dans P qui, au point M(z=x+iy) associe le point M'(z'=x'+iy') tel que z'=z+i; puis la transformation f_2 de P dans P qui, au point M(z=x+iy) associe le point $M_2(z_2=x_2+iy_2)$ tel que $z_2=\left(-\frac{\sqrt{3}}{2}-\frac{1}{2}i\right)z-i$. Soit la transformation $f=f_2$ Of_1 qui, au point M(z=x+iy) associe le point M''(z''=x''+iy'').

- 1- Déterminer la nature et les éléments caractéristiques des transformations f_1 , f_2 et f. 2pts
- 2- Exprimer x'' et y'' en fonction de x et y.

0,5pt

3- Soit (D): x - y + 2 = 0 une droite; (D')son image par f. Ecrire une équation cartésienne de (D').

Exercice 2/6,5pts

On considère les fonctions f et g définies sur]0; $+\infty[$ par $: f(x) = 2x - \frac{Lnx}{x^2}$ et $g(x) = 2x^3 - 1 + 2Lnx$

- 1- Etudier les variations de g et dresser son tableau de variation. 1,5pt
- 2- Montrer que l'équation g(x) = 0 admet une solution unique α appartenant à]0,86; 0,87[. 0,75pt
- 3- En déduire le signe de g(x) en fonction de x.

0,5pt

- 4- Démontrer que la droite d'équation (Δ): y=2x est asymptote oblique à (C_f), puis étudier la position relative de (Δ) par rapport à (C_f).
- 5- Montrer que pour tout $x \in]0, +\infty[, f'(x) = \frac{g(x)}{x^3}$, puis donner le sens de variation de f sur $]0, +\infty[$. 1pt
- 6- Dresser le tableau de variation de f, puis tracer (Δ) et (C_f) dans le repère ($0; \vec{\iota}, \vec{j}$). On prendra 2cm comme unité sur l'axe des abscisses et 1cm sur l'axe des ordonnées.
- 7- Calculer la dérivée de la fonction h définie sur $]0, +\infty[$ par : $h(x) = \frac{Lnx}{x} + \frac{1}{x}$, puis en déduire la primitive de f qui s'annule en 1 0,5pt

Exercice 3/4pts

Soit (U_n) la suite numérique définie par : $U_0=0$ et $U_{n+1}=\frac{1}{4}\left(U_n^3+1\right)$. on définit sur $I=[0\,;1]$ la fonction f par : $f(x)=\frac{1}{4}\left(x^3+1\right)$.

- 1- Etudier les variations de f, puis montrer que f(I) c I. 0,75pt
- 2- Montrer que pour tout $n \in IN$, $U_n \in I$.

0,75pt

- 3- Soit g la fonction définie sur I par : g(x) = f(x) x.
 - a- Montrer que l'équation g(x) = 0 admet sur I une solution unique β . 0,25pt
 - b- Donner un encadrement de β à 10^{-1} .
- 4- a- Montrer que pour tout $x \in I$, $|f'(x)| \le \frac{3}{4}$.

0,5pt

- b- Montrer que pour tout $n \in IN$, $|U_{n+1} \beta| \le \frac{3}{4} |U_n \beta|$. En déduire que $|U_n \beta| \le \left(\frac{3}{4}\right)^n$.
- c- Justifier que la suite (U_n) est convergente et préciser sa limite. 0,5pt

Partie B/ Evaluation des compétences/4,5pts

Le plan complexe est muni d'un repère orthonormé direct $(0; \vec{u}, \vec{v})$. L'unité de longueur est le mètre. M. ZERMELO et M. BOLZANO sont des voisins. M. ZERMELO a un jardin triangulaire dont un sommet est repéré par son affixe 2+3i; les affixes des deux autres sommets sont solutions de l'équation $z^2+(2+3i)z-2(1-2i)=0$. Il souhaite le clôturer à l'aide d'un grillage dont le mètre coûte $1000\,F$. Le terrain de BOLZANO est un domaine ABCD dont les sommets A, B et C ont pour affixes respectives -1+i, 1+5i et 3-i.Le point D est l'image du point C par la similitude directe de centre B qui transforme le point A en C . M. BOLZANO voudrait recouvrir toute la superficie de son terrain avec des carreaux ; le carton de carreaux coûte 15000F et peut recouvrir une superficie de $5m^2$.

M. ZERMELO a regroupé dans le tableau ci-dessous la production moyenne en tonnes de jardin la quinzième année si le couple (x, y) formé de l'année x et de sa production y est solution de l'équation de la droite de régression de y en x obtenue à partir de la méthode des moindres carrés.

Année (x _i)	1	2	3	4	5	6	7	8	9	10
Production (y_i)	3	4	5,1	6	7,5	8	9,4	10,5	11,5	13

<u>Tâches</u>:

- 1- Aider ZERMELO à déterminer la production de son jardin la 15 ème année. 1,5pt
- 2- Quelle somme doit prévoir M. BOLZANO pour l'achat des carreaux pouvant recouvrir entièrement son terrain ? 1,5pt
- 3- Quelle somme d'argent doit prévoir M. ZERMELO pour entourer totalement son jardin ?

« Celui qui ne sait pas et qui sait qu'il ne sait pas est un chercheur qu'il faut aider »