LYCEE TECHNIQUE D'EDEA					
Examen	Epreuve	Coef.	Durée	Classe	Année Scolaire
Evaluation 2	Mathématiques	3	3h	T ^{le} IND	2022/2023

EXERCICE 1: 5 Points

1. On considère le polynôme P de la variable complexe z défini par :

$$P(z) = z^3 - 2(\sqrt{3} + i)z^2 + 4(1 + i\sqrt{3})z - 8i.$$

a) Calculer P(2i) et conclure.

0,75pt

b) Déterminer les nombres réels a et b tels que pour tout $z \in \mathbb{C}$, on ait :

$$P(z) = (z - 2i)(z^2 + az + b).$$

0,75pt

1pt

- **c)** Résoudre dans \mathbb{C} l'équation $(E): z^3 2(\sqrt{3} + i)z^2 + 4(1 + i\sqrt{3})z 8i = 0$.
- **2.** L'espace est rapporté à un repère orthonormé direct $(0, \vec{\imath}, \vec{j}, \vec{k})$.

On donne les points A(-1;1;0), B(2;-1;3) et C(1;-1;1). Soit (S) la sphère de centre $\Omega(-2;1;3)$ et de rayon 4.

- **a)** Montrer que les points A, B et C ne sont pas alignés. En déduire une équation cartésienne du plan (ABC).
- **b)** Soit (P) le plan d'équation cartésienne 4x + 3y 2z + 1 = 0. Montrer que $(S) \cap (P)$ est un cercle dont on déterminera le centre et le rayon. **1,5pt**

EXERCICE 2: 5 Points

- **1.** Soient (U_n) et (V_n) les suites définies par : $\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{2}{5}U_n + 6 & \forall n \in \mathbb{N} \end{cases}.$ et $V_n = U_n + \alpha$ où α est un nombre réel.
 - a) Déterminer le réel α pour que (V_n) soit une suite géométrique, puis exprimer V_n en fonction de n.
 - **b)** Calculer en fonction de n la somme $S_n = U_0 + U_1 + U_2 + \cdots + U_{n-1} + U_n$. **0,75pt**
 - c) On suppose que la suite (U_n) est convergente et que $\lim_{n\to +\infty}U_n=l$. Déterminer le nombre réel l. 0,5pt
- 2. Calculer les limites suivantes :

1,5pt

$$\lim_{x \to -\infty} 2x + \sqrt{x^2 + 3x + 1} \; ; \quad \lim_{x \to +\infty} \sqrt{9x^2 + x + 5} - 3x; \qquad \lim_{x \to \frac{\pi}{3}} \frac{2\cos x - 1}{x - \frac{\pi}{2}} \; .$$

3. Etudier les branches infinies de la courbe (\mathcal{C}) de la fonction f définie de \mathbb{R} vers

PROBLEME: 10 Points

Le problème comporte deux parties indépendantes A et B.

Partie A: 7,5 Points

Soit f la fonction définie sur $\mathbb{R} - \{-1; 1\}$ par $f(x) = \frac{2x^3 + 3}{x^2 - 1}$. On note \mathscr{C} sa courbe représentative dans un repère orthonormé $(0, \vec{t}, \vec{j})$.

- **1.** Etudier les variations de la fonction g définie sur \mathbb{R} par $g(x) = -x^3 + 3x + 3$.
- **2.** Montrer que l'équation g(x) = 0 admet une unique solution α dans \mathbb{R} telle que $\alpha \in]2; 3[$. Dresser le tableau de signes de g.
- **3.** Montrer que pour tout $x \in \mathbb{R} \{-1; 1\}$, on a : $f'(x) = \frac{-2xg(x)}{(x^2 1)^2}$. **0,75pt**
- **4.** Etudier le signe de f'(x) et dresser le tableau de variations de f.
- **5.** Montrer que la droite (Δ) d'équation y=2x est asymptote à $\mathscr C$ et étudier la position relative de $\mathscr C$ par rapport à (Δ).
- **6.** Montrer que $f(\alpha) = 3\alpha$, puis construire la courbe $\mathscr C$ ainsi que ses asymptotes. **1,5pt**

Partie B: 2,5 Points

La courbe (\mathcal{C}) ci-dessous est celle d'une fonction h définie sur \mathbb{R} .

Les droites (D_1) et (D_2) sont des asymptotes à (C).

- **1.** Dresser le tableau de variations de h.
- **2.** Donner en justifiant les limites suivantes : $\lim_{x \to -\infty} \frac{h(x)}{x}$ et $\lim_{x \to +\infty} \frac{h(x)}{x}$.
- **3.** Donner en justifiant l'ensemble D de dérivabilité de h. **0,5pt**

