LYCEE GENERAL Année scolaire 2021/2022 **LECLERC** Epreuve de Mathématiques Classe: 1^{ère} C PROBATOIRE BLANC N°1 Durée : 3h Partie A: EVALUATION DES RESSOURCES 15,5 POINTS **EXERCICE 1: BARYCENTRE 3,5POINTS** ABC est un triangle rectangle isocèle en C, m est un réel différent de -2; on désigne respectivement par I le milieu de [A B] et G_m le barycentre de { (A;1); (B;1); (C;m)}. 1-a) Que représente G_m pour le triangle ABC lorsque m=1? 0,25pt 1-b) Déterminer le lieu des points G_m lorsque m décrit IR\{ - 2}. 0,5pt $g(M) = MA^2 + MB^2 + m MC^2$ 2) On considère g la fonction définie pour tout point M du plan Euclidien par : a) Monter que pour tout point M du plan on a : $g(M) = (m+2) M G_m^2 + g(G_m)$. 0,5pt b) Démontrer que $g(G_m) = \frac{m+1}{m+2}AB^2$. 0,75pt3) Déterminer l'ensemble (E_m) des points M du plan tels que $g(M) = AB^2$. 0,75pt4) Monter que pour tout réel m différent de −2, le point C appartient à (E_m); en déduire une construction de (E₋₃). 0,75pt**EXERCICE 2: FONCTION NUMERIQUE D'UNE VARIABLE REELLE 4,75 POINTS** Soit f la fonction numérique à variable réelle x définie par : $f(x) = x^2 - 3x, si \ x \in]-\infty;1]$ $\begin{cases} f(x) = x - 1 + \frac{4}{x - 3} \sin x \in]1; 3[\cup]3; +\infty[\] \end{cases}$ 1- (a) Déterminer le domaine de définition D_f de f. 0,5pt (b) Calculer les limites de f aux bornes de D_f . 1pt 2) Etudier la continuité et la dérivabilité de f au point d' abscisse $x_0 = 1$. 0,75pt3- (a) Déterminer l'ensemble dérivabilité de f. 0,25pt(b) Calculer la dérivée f' de f sur chacun des intervalles où elle est dérivable. 0,75pt(c) Etudier le sens de variation de f et dresser son tableau de variation. 0,5pt4) On note (C_f) la courbe représentative de f dans un repère orthonormal $(0; \vec{i}; \vec{j})$. a) Montrer (C_f) admet une asymptote oblique $(\Delta)en + \infty$ dont on déterminera une équation. 0,5ptb) Construire (Δ) , (C_f) ainsi que les demi-tangentes à (C_f) au point d'abscisse 1. 0,75pt**EXERCICE3: ISOMETRIE DU PLAN AFFINE EUCLIDIEN 4,5 POINTS** Soit la figure 1ci-contre, ABC et CAD sont deux triangles isocèles tels que : AB = AC = CD; Mes(\overrightarrow{AB} ; \overrightarrow{AC}) = $\frac{\pi}{4}$; $\operatorname{Mes}\left(\widehat{\overrightarrow{CD}}; \widehat{\overrightarrow{CA}}\right) = \frac{\pi}{2}$. 1) Soit r_A la rotation de centre A qui transforme B en C, r_C la rotation de centre C et d'angle $-\frac{\pi}{2}$. On pose $f = r_C o r_A$. a) Déterminer f(A) et f(B). 0,5pt

0,75pt

(0.5 + 0.75 + 0.5) = 2.25pt

b) Démontrer que f est une rotation dont on précisera (construction) son centre Ω et son angle.

a) Déterminer l'angle de s et démontrer que C' appartient à la droite (ΩA) .

[BC] et H' son image par s.

2) Soit s la similitude de centre Ω qui transforme A en B. On note C' l'image de C par s, H le milieu du segment

- b) Démontrer que H' est le milieu du segment $[\Omega B]$ et que (C'H') est perpendiculaire à (ΩB) .
- c) Déduire que C' est le centre du cercle circonscrit au triangle ΩBC .
- 3) On considère la transformation du plan g qui à tout point M associe le point M' = g(M) telle que on a:

$$\overrightarrow{MM'} = k\overrightarrow{MA} + \frac{1}{2}\overrightarrow{MB} + \frac{1}{2}\overrightarrow{MC}.$$

- a) Déterminer la nature et les éléments caractéristique de g pour $k = \frac{1}{2}$. 0,5pt
- b) Montrer que pour k = -1, g est une translation dont on donnera la vecteur. 0,5pt

EXERCICE 4 : Trigonométrie ;espace vectoriel réel ; droites et cercle du plan 4,25 points

I- TRIGONOMETRIE ET ESPACE VECTORIEL REEL

1) Résoudre dans $[0\,;\,2\pi]$ l'équation $\frac{2}{1+tan^2x}+\left(1+\sqrt{2}\right)cosx+\frac{\sqrt{2}}{2}=0.$ $x\neq\frac{\pi}{2}+k\pi.$ $k\in\mathbb{Z}.$

On remarquera que $\frac{1}{1+tan^2x} = cos^2x \ et \ (1-\sqrt{2})^2 = 3-2\sqrt{2}$.

- 2) Démontrer que $E = \{ u(x;y;z) \in IR^3, 3x 2y + 5z = 0 \}$ est un sous-espace vectoriel de IR^3 et déduire une base de E.
- II- Soit (T) et (T') les cercles d'équations respectives : $x^2 + y^2 + x 4y + 1 = 0$ et $x^2 + y^2 3x + 2y 13 = 0$.
- 1) Démontrer que (T) et (T') sont sécants en deux points A et B dont on déterminera les coordonnées. 0,75pt

Pour tout réel k, on désigne par (Ek) l'ensemble des points M(x ;y) vérifiant l'équation :

$$x^{2} + y^{2} + x - 4y + 1 + k(x^{2} + y^{2} - 3x + 2y - 13) = 0$$
.

- a) Démontrer que si k = -1, (E_k) est la droite (AB). 0,25pt
- b) Démontrer que si $k \neq -1$, (E_k) est un cercle passant par A et B, puis déterminer en fonction de k les coordonnées de son centre. 0,75 pt
- c) Déterminer l'ensemble des centres des cercles (E_k) quand k varie dans $IR\setminus\{-1\}$. 0,5pt

PARTIE B: EVALUATION DES COMPETENCES 4,5POINTS

M. NGATCHOU possède chez lui un grand espace circulaire (Ω)dont un lampadaire est placé au centre localisé par le point O, deux autres lampadaires sont placés sur cet espace et sont représentés respectivement par les points A et B, il construit également un robinet I milieu de [A B]. Son fils **MANGUI** se trouve sur cet espace et est représenté par le point M; son ami **AKONO** représenté par le point N est diamétralement opposé à M sur (Ω). De plus **BILOA** représenté par le point H est l'orthocentre du triangle **MAB. M.NGATCHOU** aimerait alors déterminer l'ensemble des positions de BILOA lorsque **MANGUI** décrit l'espace (Ω). A quelque mètres de cet espace circulaire, il se propose de construire un réservoir en tôle de forme parallélépipédique rectangle dont le volume intérieur est de **4000L** ayant un coté de sa base de longueur 2m.

Quelques heures plus tard, **M. NGATCHOU** décide de placer dans sa tontine une somme de 45 000 FCFA à un taux t % pendant un an. L'ensemble du capital ainsi obtenu est ensuite placé à un taux de (t+2) % et produit alors un intérêt pendant un an de 4860 FCFA. Il cherche à calculer les taux.

1,5pt

Tache 1 : Aider M. NGATCHOU à calculer ces deux taux.

Tache 2 : Aider M. NGATCHOU à déterminer et construire le lieu géométrique de **BILOA** lorsque MIGUEL décrit l'espace circulaire (Ω) .

Tache 3 : Déterminer la dimension de la base de ce pavé droit qui rend son aire totale minimale. 1,5pt

Fig(1)

A

Fig(2)

EXAMINATEUR: Forus NGATCHOU