LYCEE BILINGUE DE BAMYANGA			
DÉPARTEMENT DE MATHÉMATIQUES			
Deuxième Évaluation	Classes : T _D	Année scolaire 2020-2021	Date :
Épreuve de mathématiques	Durée : 4h	Coef: 4	02 /12/ 2020

PARTIE A: EVALUATION DES RESSOURCES/15 points

EXERCICE 1 (5points)

1) Mettre chacun des nombres complexes suivants sous la forme trigonométrique.

a)
$$z_1 = 1 + \sqrt{3} + i(1 + \sqrt{3})$$
; b) $z_2 = \left(\frac{1 - \sqrt{3}}{1 - i}\right)^{2020}$; c) $z_3 = -\cos\frac{\pi}{7} + i\sin\frac{\pi}{7}$;

d)
$$z_4 = -2(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6})$$
 2pts

2) Résoudre dans
$$\mathbb{C}$$
 l'équation $Z^4 = 8\sqrt{2}(-1+i)$.

3) θ est un nombre réel tel que $0 \le \theta \le \frac{\pi}{2}$. On donne le nombre complexe

$$X = \sin(2\theta) - 2i\sin^2(\theta).$$

a) Déterminer le module de X. 0.5pt

b) Déterminer si possible un argument de X. 0.5pt

4) Linéariser l'expression suivante : $f(x) = \sin^6 x$. 1pt

EXERCICE 2 (5 points)

I- On considère l'équation (E): $z^3 + 9iz^2 + 2(6i - 11)z - 3(4i + 12) = 0$.

1) Démontrer que l'équation (E) admet une solution réelle et une solution imaginaire pure.

0.5pt

2) Résoudre dans \mathbb{C} l'équation(E).

1.5pts

II- le plan (P) est muni d'un repère orthonormé $(0, \vec{u}, \vec{v})$.

Soi A,B et C les points d'affixes respectives $2 + \frac{3}{2}i$, -2 - i et -3i.

1) Déterminer l'affixe de G, barycentre du système $\{(A,2), (B,-1), (C,1)\}.$ 1pt

2) Déterminer l'affixe du vecteur $-\frac{1}{2}\overrightarrow{AB}$.

0.5pt

- 3) Détermine l'affixe du point B' symétrique de B par rapport à l'axe des imaginaires. 0.5pt
- 4) Déterminer et construire l'ensemble des points M d'affixe z tel que :

$$3|iz - 1 - i| = 6.$$

EXERCICE 3 (3points)

On donne les nombres complexes z et udéfinis par :

$$z = -8\sqrt{3} + 8i$$
 et $u = (\sqrt{6} - \sqrt{2}) + i(\sqrt{6} + \sqrt{2})$

1. a) Ecrire z sous forme trigonométrique.

0.5pt

b) Déterminer les racines carrées de z sous forme trigonométrique. 1pt

2. a) Calculer u^2 .

b) En déduire les valeurs exactes de $\cos\left(\frac{5\pi}{12}\right)$ et de $\sin(\frac{5\pi}{12})$.

EXERCICE 4 (2points)

Le plan complexe est muni d'un repère orthonormé direct $(0, \vec{e}_1, \vec{e}_2)$.

Déterminer géométriquement et représenter l'ensemble des points ${\bf M}$ d'affixe ${\bf z}$ vérifiant :

1)
$$\arg(\frac{z-2-2i}{z+2-i}) = \frac{\pi}{5} + 2k\pi; (k \in \mathbb{Z}).$$

2) le nombre complexe $\frac{z+i}{1+i+z}$ est imaginaire pur. 1pt

PARTIE B: EVALUATION DES COMPETENCES/4.5 points

Situation

M. MOUSSA veut clôturer son champs. Un expert en topographie lui conseil ceci:

- il faut prévoir une entrée délimitée par deux poteaux définis par deux points d'affixes respectives a et b, solutions de l'équation $z^2 + (3-3i)z 2 6i = 0$ dans \mathbb{C} .
- Le plan complexe est muni d'un repère orthonormé direct $(0, \vec{e}_1, \vec{e}_2)$, Construire la clôture suivant l'ensemble des points M du plan complexes d'affixe z tels que :

a)
$$\arg(\frac{z-a}{z-b}) = \frac{\pi}{3} + k\pi$$
; b) $\arg(\frac{z-a}{z-b}) = -\frac{\pi}{5} + 2k\pi$; c) $\left|\frac{z-2-i}{z-1+i}\right| = \frac{3}{2}$.

Tâches:

- 1. Déterminer et représenter la clôture et l'entrée prévue par le topographe en a). 1.5pt
- 2. Déterminer et représenter la clôture et l'entrée prévue par le topographe en b). 1.5pt
- 3. Déterminer et représenter la clôture et l'entrée prévue par le topographe en c). 1.5pt

Présentation: 0.5pt

EXAMINATEUR: M. NOUMSSI