REPUBLIC OF CAMEROUN Peace-work-Fatherland

ADAMAWA REGION

REGIONAL DELEGATION OF SECONDARY EDUCATION

DIVISIONAL DELEGATION OF VINA

NGAOUNDERE II SUBDIVISION

DOLPHINS BILINGUAL HIGH SCHOOL P.O.BOX 573 NGAOUNDERE TEL: 243 287757

REPUBLIQUE DU CAMEROUN PAIX-Travail-Patrie

REGION DE L'ADAMAOUA

DELEGATION REGIONALE DES ENSEGNEMENTS SECONDAIRES

DELEGATION DEPARTEMENTALE DE LA VINA

ARRONDISSEMENT DE NGAOUNDERE II

COLLEGE BILINGUE LES DAUPHINS **B.P. 573 NGAOUNDERE**

 $C.C N^{\circ}0\overline{2}$ **COEF: 07 DUREE:04H** EP. MATHS **CLASSE**: Tle 21 FEV 2023

EXERCICE 1:01 POINT

Déterminer le reste de la division euclidienne par 7 de l'entier naturel :

N = 9999998888887777776666666555555444444333333222222111111000000.

EXERCICE 2:03,25 POINTS

Dans le plan muni du repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$ direct. On définit l'application f par son expression

analytique : $\begin{cases} x' = x + y + 3 \\ y' = -x + y - 1 \end{cases}$ Soit (\prod) l'ensemble des points M(x;y) du plan tels que :

 $5x^2+5y^2-6xy-16=0$. On considère les points Z_A , Z_B et Z_C d'affixes respectifs $i+\sqrt{3}$, -i+3 et 2i; le point D est le centre de (Σ') et S une similitude directe transformant A en B et C en D.

- 1°) Montrer que f est bijective. **0,25PT**
- 2°) Donner l'écriture complexe de f et en déduire sa nature et les éléments caractéristiques de f. 0,5PT
- 3°) Déterminer la nature et les éléments caractéristiques (Σ') image de l'ensemble des points M(x;y) du plan tels que (Σ) : $x^2 + y^2 - 4x + 2y - 4 = 0$. **0,5PT**
- 4-a) Donner la nature et les éléments caractéristiques de (\prod') image de (\prod) par f. **0,5PT**
- b) En déduire que (\prod) est une conique dont on précisera la nature, les foyers et les sommets dans le repère $(0; \vec{\imath}; \vec{\jmath})$ du plan. 0,5PT
- 5°) Construire (Π) et (Π') dans un même repère du plan. **0,5PT**
- 6°) Déterminer les éléments caractéristiques de S. 0,5PT

EXERCICE 3:03,5 POINTS

- $\overline{\mathbf{I} \text{Pour tout}}$ entier naturel n, on pose $I_n = \int_0^1 \frac{e^{nx}d(x)}{1 + e^x}$.
- 1°) Calculer I₁; I₀+I₁ et en déduire la valeur de I₀. **0,75PT**
- 2-a) Calculer $I_{n+1}+I_n$ et donner la monotonie de $(I_n)_{n\in\mathbb{N}}$, pour tout x élément de l'intervalle [0; 1]. **0,5PT**
- b) Prouver que pour tout x de l'intervalle [0; 1], on a : $\frac{e^{nx}}{e+1} \le \frac{e^{nx}}{e^x+1} \le \frac{e^{nx}}{2}$. **0,25PT**
- c) Calculer la limite I_n.(On pourra encadrer d'abord I_n). **0,25PT**
- 3°) Calculer la limite de la suite $J_n = \int_0^1 \frac{e^{nx}}{e^n + e^{n+x}} d(x)$. **0,5PT**

II —Pour tout entier naturel n fixé tel que $n \ge 1$, on considere la suite la suite U_n définie par :

 $U_n=1+\frac{1}{1!}+\frac{1}{2!}+\dots+\frac{1}{n!}$ et la fonction f définie sur [0; 1]par :

 $f: x \mapsto e^{-x} \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!} \right).$

- 1°) Montrer que f est dérivable sur [0; 1] et que f'(x)= $-\frac{x^n}{n!}e^{-x}$. 0,5PT
- 2°) Déduire que pour tout x élément de l'intervalle [0;1], $|f'(x)| \le \frac{1}{n!}$. 0,25PT
- 3°) Montrer que $\left|\frac{1}{e}U_n-1\right| \leq \frac{1}{n!}$ et en déduire la limite de U_n. **0,5PT**

EXERCICE 4:07,5 POINTS

Dans toutes les parties, le plan est rapporté à un repère orthonormal $(0; \vec{t}; \vec{j})$ d'unité graphique 2cm.

PARTIE_A: On considère la fonction numérique u définie sur \mathbb{R} par $u(x) = \sqrt{x^2 + 1} - x$ et on désigne par (C_1) sa courbe représentative dans un repère du plan.

- 1°) Calculer les limites aux bornes de l'ensemble de définition de la fonction u.0,5PT
- 2-a) Montrer que u(x)+2x tend vers 0 quand x tend vers - ∞ . 0,25PT
- b) Montrer que $\forall x \in \mathbb{R}$, on a u(x) > 0. En deduire le signe de u(x) + 2x. 0,5PT

- c) Interpréter graphiquement ces résultats. 0,25PT
- 3-a) Montrer que la dérivée de la fonction u est définie sur \mathbb{R} par u'(x)= $\frac{-u(x)}{\sqrt{x^2+1}}$. 0,25PT
- b) Etudier les variations de la fonction u. 0,25PT
- 4°) Tracer la courbe (C₁) et son asymptote oblique. **0,5PT**

PARTIE B: On considère la fonction f définie sur \mathbb{R} par $f(x) = \int_0^x \frac{-1}{\sqrt{t^2+1}} d(t)$ et (C_2) sa courbe.

- 1°) Montrer que pour tout réel x, on a $f(x)=\ln(u(x))$. **0,25PT**
- 2°) Calculer les limites de f en $\pm \infty$ et étudier ses variations. **0,5PT**
- 3-a) Déterminer une équation de la tangente T à la courbe (C_2) au point d'abscisse x_0 =0. **0,25PT**
- b) Soit maintenant la fonction φ définie sur \mathbb{R} par $\varphi(x) = f(x) + x$. Montrer que φ est croissante et que $\varphi(0) = 0$. En déduire la position de la courbe (C₂) par rapport à sa tangente T. **0,75PT**
- 4°) Tracer sur le même graphique la courbe (C₂) et la tangente T. **0,5PT**

PARTIE_C: 1°) On pose $\propto = \frac{1-e^2}{2e}$. Montrer que $u(\propto) = e$ et en déduire $f(\propto)$. **0,5PT**

- 2°) A l'aide d'une intégration par partie, calculer $\int_{\infty}^{0} ln(\sqrt{x^2+1}-x)dx$. **0,25PT**
- 3°) V est une primitive de u et g la fonction définie sur \mathbb{R} par $g(t) = \frac{e^t e^{-t}}{2}$. a) Montrer que $u(g(t)) = e^{-t}$. 0,5PT
- b) Justifier que Vo g est dérivable sur \mathbb{R} et que sa derivée est définie par $(V \circ g)'(t) = \frac{1 + e^{-2t}}{2}$. 0,5PT
- c) En déduire que V(0)-V(\propto) = $(V \circ g)(0) (V \circ g)(-1) = \int_{\alpha}^{0} \left(\frac{1+e^{-2t}}{2}\right) dt$, puis que $\int_{\alpha}^{0} u(x) dx = \frac{e^{\alpha}+1}{4}$. **0,5PT**
- 4°) On admet que pour tout x réel, f(x) < u(x). Déduire l'aire du domaine limité par les courbes (C_1) et (C_2) et les droites d'équations $x=\infty$ et x=0. **0,5PT**

EXERCICE 5: 03,5 POINTS

I -Le plan complexe est muni d'un repère orthonormé direct
$$(0; \vec{u}; \vec{v})$$
.

On pose : $Z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2}$ et $Z_2 = 1 + i$.

1) Déterminer la forme exponentielle de Z_1 ; Z_2 et $Z_1 \times Z_2$. **0,75PT**

- 2) Déterminer la forme algébrique de Z. **0,25PT**
- 3) En déduire la valeur exacte de $\cos(\frac{\pi}{12})$ et de $\sin(\frac{\pi}{12})$. **0,25x2=0,5PT**
- 4)Démontrer que l'ensemble des entiers relatifs n tels que $(1+i)^n$ soit un réel est $4\mathbb{Z}$. **0,25PT**
- 5°) Déterminer l'ensemble des points M du plan tel que : $\arg(Z+1) \equiv \frac{\pi}{6} [2\pi]$. **0,25PT**
- II -Soit a et b deux nombres complexes non nuls différents de 1 dont a est une racine cinquième de 1, b est une racine septième de 1 et on considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{1-x^6}{1-x^6}$
- 1°) Montrer que $1+a+a^2+a^3+a^4=0$. **0,25PT**
- 2°) Calculer $1+2a+3a^2+4a^3+5a^4$. (on pourra remarquer que f'(x)= $1+2x+3x^2+4x^3+5x^4$). **0,25PT**
- 3°) Montrer que $\frac{b}{1+b^2} + \frac{b^2}{1+b^4} + \frac{b^3}{1+b^6} = -2$. **0,25PT** 4°) Soit x une racine n^{ieme} de l'unité diffèrent de 1. Calculer S=1+2x+3x²+.....+nxⁿ⁻¹. **0,25PT**
- 5°) En déduire que $\forall n \in \mathbb{N}^*$, $1+4+12+\dots+n \times 2^{n-1}=(n-1)2^n+1$. **0.5PT**

PARTIE B: EVALUATION DES COMPETENCES:02.25 POINTS **SITUATION PROBLEME:**

Un astronome a observé au jour J_0 le corps céleste A, qui apparait périodiquement tous les 105 jours. Six jours plus tard (J_0+6) , il observe le corps B, donc la période d'apparition est de 81 jours. On appelle J_1 , le jour de la prochaine apparition simultanée des deux objets aux yeux de l'astronome.

<u>Tâche1</u>: Soit u et v le nombre de périodes éffectuées respectivement par A et B entre J₀ et J₁. Montrer que le couple

Tâche2: Déterminer les solutions de l'équation (E) et le couple (u ;v) permettant de déterminer J₁......0,75 PT

Tâche3: Le jour J_0 était mardi 7 décembre 1999, quelle sera la date exacte du jour J_1 .

