BP: 3604 www.cobilaper.org Tél. : (237) 243106812

PROBATOIRE BLANC N°1 DE L'ENSEIGNEMENT GENERAL

DATE	EPREUVE	CLASSE	DUREE	HORAIRE	COEFFICIENT
18/02/2020	CHIMIE	1 ^{ère} C-D	2H	14H15 - 16H 15	02

Partie A: Evaluation des ressources / 10 pts

Exercice 1: Restitution des savoirs/ 5 pts

1) Définir: réducteur (du point de vue du n.o) ; oxydation (du point de vue du n.o) ; réaction de substitue.	
corrosion	1 pt
2) Citer deux méthodes de protection du fer contre la corrosion	0,5 pt
3) Citer deux applications industrielles de l'oxydoréduction par voie sèche	0,5 pt
4) Les alcanes sont les hydrocarbures à chaine saturée	
4.1) Justifie cette affirmation	0,25 pt
4.2) Donner la formule générale des alcanes	0,25 pt
4.3) Citer un type de réaction que peut subir les alcanes	0,25 pt
5) le méthane est le plus simple des alcanes	
5.1) Ecrire la formule développée de la molécule de méthane	0,25 pt
5.2) Donner sa structure géométrique, la valeur de ses angles valenciels et la distance interatomique	0,75 pt
6) Donner les noms ou formules semi-développées des composés suivants :	0,75 pt
a) CH ₃ -CH(CH ₃)-CH(Br)-CH ₂ -CH ₃ b) CH ₃ -CH(CH ₃)-CH ₂ -CH(C ₂ H ₅)-CH ₃	
c) 1-Bromo-2-éthylcyclohexane	
7) Citer deux applications de l'électrolyse à anode soluble	0,5 pt

Exercice 2: Application directe des savoirs et savoir-faire/ 5pts

I- Chimie organique / 2 pts

1) On fait bruler 4,4g de propane dans un excès de dioxygène	
1.1) Ecrire l'équation bilan de la réaction	0,25 pt
1.2) Calculer le volume de dioxyde de carbone obtenu dans les C.N.T.P	0,5 pt
2) Un alcane A a pour masse molaire 72 g/mol	
2.1) Déterminer la formule brute de A	0,5 pt
2.2) Ecrire les formules semi-développées des isomères de l'alcane A	
Donnée : masse molaire atomique en g/mol C : 12 ; H : 1 volume molaire : 22,4 L/mol	

II- Oxydoréduction / 3 pts

1.1) Vérifier si les réactions ci-dessous sont des réactions d'oxydoréduction. Indiquer si possible l'élément oxydé et l'élément réduit

a) $Cl_2 + 2OH^- \longrightarrow ClO^- + Cl^- + H_2O$	1 pt
b) $Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O$	0,5 pt
1.2) Quel nom donne-t-on à la réaction a) ?	0,25 pt
2) Utiliser le nombre d'oxydation pour équilibrer les équations bilans suivantes :	
a) $H_2SO_4 + C \longrightarrow CO_2 + SO_2 + H_2O$	0,5 pt
b) $Cu + H^+ + NO_3^- \longrightarrow Cu^{2+} + NO + H_2O$	0,75 pt

Partie B: Evaluation des compétences/ 10 pts

Situation problème 1 : Utilisation des acquis / 5 pts

Compétence visée : Détermination de la formule brute d'un hydrocarbure

Dans le laboratoire du collège bilingue La perfection, l'étiquette d'un produit Z a été malheureusement effacé. Votre enseignant de chimie veut déterminer la formule brute et les différents isomères de Z, pour cela il réalise la combustion complète de 40 cm^3 d'un hydrocarbure gazeux dans 1750 cm^3 d'air. A l'issue de cette réaction, il reste 250 cm^3 d'un mélange gazeux dont les $\frac{16}{25}$ sont absorbés par la potasse et le reste par le phosphore. Après cette opération il ne parvient à déterminer la formule brute et les différents isomères de Z. Il fait appel à vous élève en classe de $1^{\text{ère}}$ S.

Tâche 1 : Aide votre enseignant de chimie à déterminer la formule brute de Z

3 pts

<u>Consigne</u>: On écrira d'abord l'équation bilan de la combustion complète et on rappelle que $Vair = 5 VO_2$ <u>Tâche 2</u>: Aide votre enseignant à déterminer les formules semi-développées des isomères répondant à la

formule brute de Z et les nommer 2 pts

Situation problème 2 : Utilisation des acquis dans le contexte expérimental / 5 pts

Compétence visée : Préparation d'une solution

Afin de déterminer la concentration d'une solution d'ions Fe²⁺, Duplex procède par deux méthodes : Première expérience : il introduit 1 g de limaille de fer dans un bécher contenant 50 cm³ d'acide chlorhydrique concentré. On négligera la variation de volume

Deuxième expérience : il prélève $10~\rm cm^3$ d'une autre solution d'ions Fe^{2+} , qu'il introduit dans un bécher. Il dose ensuite cette solution par une solution de permanganate de potassium de concentration molaire $3,6x10^{-2}$ mol/L et de volume $20~\rm cm^3$ contenue dans une burette graduée

A la fin de ces deux expériences Duplex affirme que la concentration des ions Fe²⁺ est la même dans ces deux expériences

<u>Tâche 3</u>: Propose à Duplex pour la première expérience deux précautions à prendre lors de la manipulation de cet acide et pour la deuxième expérience deux faits observables dans le bécher puis un schéma du dispositif expérimental utilisé

2,5 pts

Tâche 4: Aide Duplex à justifier son affirmation

<u>Consigne</u>: Après avoir écrit l'équation bilan de la réaction qui a lieu dans chaque expérience tu détermineras la concentration des ions Fe^{2+} dans chacune de ces deux expériences

Donnée: $E^{\circ}(Fe^{3+}/Fe^{2+}) = 0.77 \text{ V}$; $E^{\circ}(MnO_4/Mn^{2+}) = 1.51 \text{ V}$; masse molaire atomique en g/mol: Fe = 55.8; S

Grille d'évaluation des compétences

Critères	Pertinence de la production	Maîtrise des connaissances	Cohérence de la production
Tâches		scientifiques	
Tâche 1	1 point	1 point	1 point
Tâche 2	0,5 point	0,5 point	1 point
Tâche 3	0,5 point	1 point	1 point
Tâche 4	0,5 point	1 point	1 point