CENTRE D'EDUCATION ET DE COACHING POUR UNE MENTALITE EMERGENTE EN VUE D'UN CAMEROUN EMERGENT

Tél: 6 94 84 16 82 / 675 95 7731

EDUCATION AND COACHING CENTER FOR AN EMERGING MENTALITY FOR AN EMERGING CAMEROON

Tel: 695 11 64 75

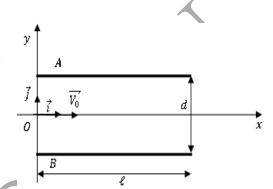
DUREE 2H00

TRAVAUX DIRIGES DU VENDREDI 13-01-2023

PARTIE A: EVALUATION DES RESSOURCES

EXERCICE 1: Vérification des savoirs

Définir: référentiel géocentrique. Pour quoi un référentiel géocentrique n'est-il qu'approximativement galiléen


- 2. Énoncer le théorème du centre d'inertie
- 3. Définir la période de révolution d'un satellite

Exercice2:

On dispose de deux armatures métalliques A et B, planes, parallèles à un axe horizontal Qx, distantes de \mathbf{d}_i de longueur ℓ_i placées dans le vide. Entre ces armatures on maintient une tension $U_{AB} = V_A - V_B = 15V$ un électron pénètre en O entre ces armatures avec une vitesse V_0 parallèle à Ox. On donne : $V_0 = 6.0 \times 10^6 \ m/s$; $d = 2 \ cm$;

$$\ell = 5 \text{ cm}$$
; $m_e = 9.1 \times 10^{-31} \text{ kg}$; $q_e = -e = -1.6 \times 10^{-19} \text{ C}$

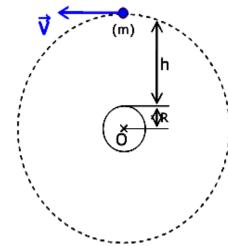
1. Reproduire le schéma et indiquer les signes de chaque armature, puis représenter le champ électrique E et la force électrique F_e qui agissent sur l'électron entre les armatures A et B.

2. Etablir l'équation de la trajectoire de l'électron en négligeant le poids de celui-ci par rapport à la force électrique. Faire l'application numérique. Représenter approximativement cette trajectoire sur la figure.

L'électron pourra-t-il sortir de ce condensateur ? si oui, déterminer la valeur Vs de la vitesse à la sortie. Exercice3:

L'on se propose d'étudier le mouvement d'un satellite artificiel de masse m, dans un référentiel géocentrique supposé galiléen.

1. Un satellite est en mouvement sur une orbite circulaire, à une distance r = R + h du centre O de la terre où R est le rayon de la terre supposée sphérique et h l'altitude du satellite. L'altitude h est suffisante pour que l'on puisse considérer que le satellite est soumis à la seule force de gravitation due à la terre.


a) En appliquant le théorème du centre d'inertie au satellite supposé ponctuel, montrer que son mouvement est uniforme.

b) Exprimer la vitesse linéaire V du satellite en fonction de R, h et go, l'intensité de la pesanteur à l'altitude de h est

donnée par la relation
$$g_h = g_0 \left(\frac{R}{R+h}\right)^2$$

Montrer qu'elle peut s'écrire
$$T = \frac{2\pi}{r} \times \frac{r^{\frac{3}{2}}}{\sqrt{g_0}}$$

- 2. a) Quand dit-on qu'un satellite est géostationnaire ?
- b) Calculer l'altitude à laquelle il doit être mis en orbite sachant que sa période est 86164 s, $g_0 = 9.8 \text{ m.s}^{-2}$; R = 6 400 Km

Exercice4:

On dispose d'un ressort à spires non jointives, de longueur au repos l₀ et de raideur k. On néglige la masse du r essort. On enfile ce ressort sur une tige Ot, soudée en O à un axe vertical (Δ) et inclinée obliquement par rapport à la verticale descendante en O d'un angle $\theta(\theta < 90^{\circ})$. Une des extrémités du ressort est fixée en O tandis que l'autre est reliée à un corps (C) de masse m =150g pouvant coulisser sans frottements sur Ot. On prend g = 10 N/Kg.

CENTRE D'EDUCATION ET DE COACHING POUR UNE MENTALITE EMERGENTE EN VUE D'UN CAMEROUN EMERGENT

Tél: 6 94 84 16 82 / 675 95 7731

EDUCATION AND COACHING CENTER FOR AN EMERGING MENTALITY FOR AN EMERGING CAMEROON

Tel: 695 11 64 75

TRAVAUX DIRIGES DU VENDREDI 13-01-2023

PHYSIQUE TD

DUREE 2H00

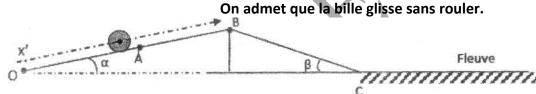
1. Le système est tau repos

- 1.1. Exprimer et calculer l'allongement Δl_1 du ressort. On donne θ = 33°
- 1.2. Calculer l'intensité de la force R exercée par la tige sur le corps, ainsi que celle de la tension T du ressort.
- 2. Le système tourne autour de (Δ) à la vitesse angulaire constante ω et le ressort n'oscille pas et a une longueur constante l_2 .
- 2.1. Préciser la trajectoire décrite par le corps (centre et rayon).
 Représenter sur cette trajectoire en un point donné les vecteurs accélération
- a et vitesse $\stackrel{'}{V}$.
- 2.2. Exprimer et calculer l_2 . pour $\omega = 6$ rad/s et $\omega = 10$ rad/s
- 2.3. Exprimer et calculer l'intensité de la force

 $\stackrel{'}{R}$ exercée par la tige sur le corps en fonction de m, g, l₂ , θ et ω .

Application numérique : $\omega = 6$ rad/s et $\omega = 10$ rad/s.

Interpréter les résultats ainsi obtenus.


2.4. Montrer que, pour une valeur particulière $\,\omega$ de la $\,$ vitesse angulaire que $\,$ l'on calculera, la réaction

 \hat{R} exercée par la tige sur le corps a une intensité nulle. Interpréter cette situation.

EVALUATION DES COMPETENCES

Pour acheminer certaines billes de bois, une société forestière opte pour la voie fluviale. C'est ainsi qu'une bille de bois de masse m=1,5x10³ kg est poussée le long d'une pente inclinée d'un angle α = 10°, par un engin exerçant une force constante parallèle à la ligne de plus grande pente du plan incline. En B, la bille de bois amorce une descente et arrive dans le fleuve.

A l'instant t = 0 s, le centre d'inertie G de la bille coïncide avec le point O et est au repos. Le point 0 est l'origine de l'axe (x'x) parallèle à la pente, et oriente vers le haut (figure ci-dessous).

Première phase (de O à A)

Entre les points O et A distants de d = 80 m, l'engin exerce une force motrice d'intensité F sur la bille. Celle-ci est alors animée d'un mouvement uniformément varié d'accélération a. Elle arrive en A avec une vitesse d'intensité $V_A = 16 \text{m/s}$.

Deux élèves de terminale voulant évaluer la force motrice sont en désaccord sur sa valeur, l'un propose 5262 N et l'autre 6984 N.

On néglige les forces de frottements

Deuxième phase (de A à B)

Arrivée au point A, les ouvriers règlent (grâce à un dispositif approprié) la force motrice de l'engin à une

nouvelle valeur F'=9,2x10³ N. La résultante des forces de frottements \vec{f} a pour intensité $f = 7,5 \times 10^3 N$. Entre A et B, la bille animée d'un mouvement décélère arrive au point B avec une vitesse nulle.

Le Directeur General offre une prime spéciale à tous les acteurs de la deuxième phase si celle-ci se fait en moins de 22 s.

Données: $g = 10 \text{ m/s}^2$

Tache1: En exploitant les informations de la première phase, départage les deux élèves.

Tache2 : En vous appuyant sur la deuxième phase du mouvement de la bille et à l'aide d'une démarche scientifique, indique si les acteurs de la deuxième phase bénéficieront de la prime.

POUR LE GROUPE ECLOSION

2/2