GROUPE ECLOSION

TRAVAUX DIRIGES CLASSE DE TERMINALE D

PROPOSE PAR: Dr FOTSO

EXERCICE 1

En utilisant le théorème de l'inégalité des accroissements finis, démontrer que :

pout tout
$$x \in \left[0; \frac{1}{2}\right]$$
, $1 - \frac{x}{\sqrt{2}} \le \sqrt{1 - x} \le 1 - \frac{x}{2}$ et que $\forall x \in [-1; 2]$, $\frac{x}{4} + \frac{5}{4} \le \sqrt{x + 2} \le \frac{x}{2} + \frac{3}{2}$.

EXERCICE 2 Soit g le fonction définie par: $g(x) = -1 + \frac{x}{\sqrt{x^2 + 3}}$ et $f(x) = \frac{1}{2}(\sqrt{x^2 + 3} - x + 1)$

- 1) a) Dresser le tableau de variations de g et en déduire le signe de g.
 - b) Montrer que le point I(0; 1) est centre de symétrie à la courbe de la fonction g...
- 2) a) Vérifier que $f'(x) = \frac{1}{2}g(x)$ et en déduire le tableau de variations de f.
 - b) Montrer que la courbe (C_f) de la fonction f admet deux asymptotes que l'on déterminera.
 - c) Construire la courbe de la fonction f
- 3) On définit la suite $(U_n)_{n\in\mathbb{N}}$ par $\begin{cases} U_0 = 1 \\ U_{n+1} = f(U_n) \end{cases}$
 - a) Montrer que $U_n \ge 0 \ \forall n \in \mathbb{N}$.
 - b) Montrer que $\forall x \in [0; +\infty[, |g(x)| \le 1]$. En déduire que $\forall x \in [0; +\infty[, |f'(x)| \le \frac{1}{2}]$.
 - c) Montrer que pour tout entier naturel n, $|U_{n+1} 1| \le \frac{1}{2}|U_n 1|$.
 - d) En déduire que pour tout entier naturel n, $|U_n 1| \le \left(\frac{1}{2}\right)^n$
 - e) En déduire la limite de la suite $(U_n)_{n\in\mathbb{N}}$

EXERCICE 3 Partie A On considère la fonction g définie sur \mathbb{R} par $g(x) = 2x^3 - 3x^2 - 1$.

- 1) Etudier les variations de g et dresser son tableau de variations.
- 2) En déduire que l'équation g(x) = 0 admet une solution unique dans \mathbb{R} que l'on notera α . Vérifier qu'une valeur approchée de α à 10^{-1} près par défaut est 1,6
- 3) Déterminer le signe de g sur \mathbb{R}

<u>Partie B</u> On considère la fonction f définie par $f(x) = \frac{1-x}{x^3+1}$. On note C sa courbe représentative dans un repère orthonormé (unité des axes : 2cm)

- 1) Etudier les limites de f aux bornes de son domaine et donner une interprétation graphiques des résultats
- 2) Calculer la dérivée de f en déduire à partir la partie A le signe de la dérivée. En déduire le tableau de variation de f.
- 3) Soit A le point de C d'ordonné 0. Montrer que A est un pont d'inflexion de C et donner une équation de la tangente T_A en A à C
- 4) Soit B le point d'abscisse 1. Donner une équation de la tangente (T_B) en B à C. Démontrer que C est au-dessus de (T_B).
- 5) Tracer (T_A), (T_B) et C

EXERCICE 4 On considère la fonction f définie par $f(x) = \frac{2x^3+3}{x^2-1}$. On note C sa courbe représentative dans un repère orthonormé (unité des axes : 2cm)

Partie A On considère la fonction g définie sur \mathbb{R} par $g(x) = x^3 - 3x - 3$.

4) Etudier les variations de g et dresser son tableau de variations.

- 5) En déduire que l'équation g(x) = 0 admet une solution unique dans \mathbb{R} que l'on notera α . Vérifier que, $2,10 \le \alpha \le 2,11$
- 6) Montrer que $f(\alpha) = 3\alpha$
- 7) Déterminer le signe de g sur R

Partie B

- 6) Etudier les limites de f aux bornes de son domaine et donner une interprétation graphiques des résultats
- 7) Calculer la dérivée de f en déduire à partir la partie A le signe de la dérivée. En déduire le tableau de variation de f.
- 8) Montrer que la droite (D) d'équation y = 2x est asymptote à la courbe C.
- 9) Préciser les coordonnées du point de rencontre de C et (D). Etudier la position relative entre C et (D)
- 10) Déterminer les abscisses des points de la courbe où la tangente est parallèle à l'asymptote oblique.
- 11) Déterminer l'équation de la tangente T au point d'abscisse $\frac{-3+\sqrt{5}}{2}$
- 12) Tracer C la droite (D) et la tangente

EXERCICE 5

Soit (U_n) la suite définie par $U_0=1$ et pout tout $n\in\mathbb{N}$, $U_{n+1}=\frac{3U_n+2}{U_n+4}$ et f la fonction définie sur l'intervalle

$$I = [0; 1]$$
 par: $f(x) = \frac{3x+2}{x+4}$.

- 1) Etudier les variations de f et montrer que $\forall x \in I$, $f(x) \in I$.
- 2) En déduire par récurrence que pour tout entier naturel n, $U_n \in I$.
- 3) a) Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $0 \le U_n \le 1$.
 - b) Etablir que $U_{n+1} U_n = \frac{(1 U_n)(U_n + 2)}{U_n + 4}$. En déduire le sens de variations (U_n)
 - c) En déduire que cette suite est convergente et déterminer sa limite.
- **4**) On définit la suite (v_n) par $v_{n+1} = \frac{U_n 1}{U_n + 2}$
 - a) Montrer que (v_n) est suite géométrique dont on déterminera la raison.
 - b) Exprimer v_n , puis U_n en fonction de n.
 - c) Etudier la convergence de la suite (U_n) .

EXERCICE 6

Soit (U_n) la suite définie par : $\begin{cases} U_0 = 3 \\ U_{n+1} = \frac{2}{U_n+1} \end{cases}$

- 1) Démontrer par récurrence que pour tout $n \in \mathbb{N}$, $0 \le U_n \le 3$.
- 2) On définit la suite (v_n) par $v_{n+1} = \frac{U_n 1}{U_n + 2}$
 - a) Montrer que (v_n) est suite géométrique dont on déterminera la raison.
 - d) Exprimer v_n , puis U_n en fonction de n.
 - e) Etudier la convergence de la suite (U_n) .

EXERCICE 7

Soit (u_n) la suite définie par $u_0=3$ et pout tout $\in \mathbb{N}$, $u_{n+1}=\sqrt{2+\frac{u_n^2}{2}}$

- 1) Montrer par récurrence que $\forall n \in \mathbb{N}, 0 \le u_n^2 4$
- 2) Montrer que $\forall n \in \mathbb{N}, u_{n+1}^2 4 \le \frac{u_n^2 4}{2}$.
- 3) En déduire par récurrence $\forall n \in \mathbb{N}, u_n^2 4 \le \frac{u_0^2 4}{2^{n+1}}$.
- 4) En déduire que la suite (u_n^2) converge vers 4.

5) Que peut-on dire de la convergence et de la limite de la suite $(u_n)_n$

EXERCICE 8:

Le tableau suivant donne le poids y en kg d'un nourrisson, x jours après sa naissance.

x_i	5	7	10	14	18	22	26
y_i	3,61	3,7	3,75	3,85	3,90	4,05	4,12

- 1) Représenter le nuage de points associé à cette série statistiques dans un repère orthogonal.
- 2) Déterminer les coordonnées \bar{x} et \bar{y} du point moyen G de cette série et le placer sur le graphique.
- 3) a) On donne V(x) = 52,531, calculer la variance de y.
- b) Montrer que Cov(x, y) = 1,239.
- c) Calculer le coefficient de corrélation linéaire r de cette série statistique. Ce résultat permet-il d'envisager un ajustement linéaire ?
 - 4) a) Déterminer une équation de la droite de régression de *y* en *x* par la méthode des moindre carrés et représenter cette droite sur le graphique.
- b) Donner une estimation du poids du nourrisson 30 jours après sa naissance.

Exercice 9:

On a écrasé et dissout un comprimé d'« aspirine 500 » dans l'eau. Un certain volume de cette solution est dosé avec une solution d'hydroxyde de sodium. Le tableau ci-dessous donne le volume x_i (en millilitre) de la solution obtenue et son potentiel d'hydrogène y_i

Volume (x_i)	2	4	6	7	8	9	10	10,3
$PH(y_i)$	3,3	3,5	3,7	3,9	4,1	4,4	4,7	5

- 1. Représenter le nuage de points associé à cette série double dans un repère orthonormé (unité : 1 cm)
- 2. Ce nuage suggère-t-il un ajustement linéaire ?
- 3. Calculer le coefficient de corrélation linéaire et confirmer la conjecture faite à la question 2.
- 4. Ecrire une équation de la droite de régression de Y en X
- 5. En déduire une estimation de la valeur du PH de la solution pour un volume de 11 ml.

EXERCICE 10:

Le plan complexe est muni d'un repère orthonormé $(0, \vec{i} \vec{j})$

A est le point du plan $z_1 = \frac{1}{2} + i \frac{\sqrt{3}}{2}$; B(0,2) Mest le point d'affixe z = x + iy et M' le point d'affixe z' = x' + iy'

Soit n un entier naturel, on définie la suite (z_n) de nombres complexes par : $z_0 = \frac{1}{2} + i \frac{\sqrt{3}}{2}$ et $z_{n+1} = \frac{1}{2}$

 $(1+i\sqrt{3})z_n$ pour tout entier naturel n. M_n est le point d'affixe z_n , $r_n=|z_n|$, $\theta_n=arg(z_n)$.

On a alors $z_n = r_n e^{i\theta_n}$

- a) Ecrire $1 + i\sqrt{3}$ sous la forme exponentielle
- b) Montrer que la suite (r_n) est géométrique et que la suite (θ_n) est arithmétique. (On pourra utiliser la forme trigonométrique de z_{n+1})
- c) En déduire r_n , puis θ_n en fonction de n.
- d) Déterminer n pour que z_n soit réel.

Compétence 1

Dr Fotso possède trois terrains dont il veut absolument clôturer car il lui est rapporté que des personnes mal intentionnées utilisent ces espaces non occupés à des mauvaises fins. Dr Fotso décide d'acheter du fil barbelé pour clôturer ses trois terrains. Le rouleau de 5m du fil est vendu à 3500 fr. **Le premier terrain:** est

formé de l'ensemble de tous les points M(x, y) du plan complexes d'affixe z vérifiant |2iz - 1 - 3i| = 8. Le deuxième terrain : quant à lui est de la forme rectangulaire dont les dimensions sont la partie réelle et partie imaginaire de solution de l'équation $(1 + 4i)z + (3 - 4i)\bar{z} = 4 - 8i$. Le troisième terrain est formé de l'ensemble des points M d'affixe z du plan complexe tels que la partie réelle de $\frac{z}{z=2i}$ soit nul. NB : Les distances dans tous ces terrains sont exprimés en décamètre.

- 1) Quel est le montant à dépenser par Dr Fotso pour achat du fil barbelé permettant de clôture entièrement le premier terrain ?
- 2) Quel est le montant à dépenser par Dr Fotso pour achat du fil barbelé permettant de clôture entièrement le deuxième terrain ?
- 3) Quel est le montant à dépenser par Dr Fotso pour achat du fil barbelé permettant de clôture entièrement le troisième terrain ?

Compétence 2

Mr Roma est copté par le P.C.O d'un événement sportif olympique pour réaliser les patrons des nouvelles aires de jeu de ce certains sports.

- L'aire de jeu de basket est donnée par l'ensemble des nombres complexes d'affixes z privé de 1 tels que $\frac{z-1-2i}{z-1}$ soit imaginaire pur.
- L'aire de jeu de la course de résistance est donnée par l'ensemble des nombres complexes d'affixe z tels que $z^4 = -4$.
- L'aire de jeu du lancer de javelot est donnée par l'ensemble des nombres complexes d'affixes z tels que : $z^3 (2+4i)z^2 + (-4+9i)z + 5 5i = 0$. (sachant cette équation admet une solution réelle).
- 1) Déterminer la nature exacte puis représenter dans un repère orthonormé l'aire de jeu de basket.
- 2) Déterminer la nature exacte puis représenter dans un repère orthonormé l'aire de jeu de la course de résistance.
- 3) Déterminer la nature exacte puis représenter dans un repère orthonormé l'aire de jeu du lance de Javelot.

Problème

On suppose que, sur une période donnée, la population d'un pays est constante et égale à 60 millions d'habitants, dont 40 millions vivent en zone rurale et 20 millions en ville. On constate que les mouvements de population sont décrits par la règle suivante : chaque année, 20% des ruraux émigrent à la ville et 10% des citadins émigrent en zone rurale. On note respectivement V_n et R_n les effectifs (en millions) des citadins et des ruraux au bout de n années ($V_0 = 20$ et $R_0 = 40$).

- 1. Montrer que, pour tout entier ≥ 0 , on a: $\begin{cases} V_{n+1} = 0.9V_n + 0.2R_n \\ R_{n+1} = 0.1V_n + 0.8R_n \end{cases}$
- 2. a) Que vaut $V_n + R_n$?
- b) En Déduire que pour tout entier naturel $n: V_{n+1} = 0.7V_n + 12$ et $R_{n+1} = 0.7R_n + 6$
- 3. En utilisant des suites géométriques auxiliaires sagement définies, exprimer V_n et R_n en fonction de n.
- 4. Etudier les limites des suites (V_n) et (R_n) , puis conclure.