COLL ÈGE François-Xavier VOGT B.P.: 765 Ydé – Tél.: 222 31 54 28 e-mail: <u>collegevogt@yahoo.fr</u>		Année scolaire 2022-2023
Département de PHYSIQUE	MINI SESSION	Date : 1er Novembre 2022
Classes : 1ères D et TI	EPREUVE DE PHYSIQUE	Durée : 02 H

A- EVALUATION DES RESSOURCES: / 24 Points

Exercice 1: Vérification des savoirs/8 Points

1) Définir: a-métrologie ; b- énergie cinétique ; c- contrainte d'une loi.

 $0.5pt \times 3$

2) Enoncer le Théorème de l'énergie cinétique.

1,5pt

3) Répondre par « vrai » ou « faux ».

0,5pt x 3

- a- Pour un solide en translation rectiligne uniforme, le travail de la somme des forces appliquées au solide est toujours nul.
- b- L'énergie cinétique d'un solide double quand sa vitesse double.
- c- Lors d'un choc inélastique seule la quantité de mouvement est conservée.
- 4) Donner l'expression de l'énergie cinétique de rotation en explicitant chaque terme de la formule et les unités respectives du système international.

 0,5pt x 3
- 5) Pourquoi dit-on que le travail d'une force est une grandeur algébrique ?

1pt

6) Quelle différence y a-t-il entre la sensibilité et la résolution d'un appareil?

1pt

Exercice 2: Applications des savoirs/8 Points

1. Travail et Puissance d'une force/3Points

Un disque (D) de rayon r = 0.1m tourne autour d'un axe fixe (Δ) sous l'action d'une force \overrightarrow{F} tangentielle au disque d'intensité F = 10N. Pour un déplacement correspondant à un demi-tour calculer:

1.1- Le travail de la force \overline{F} .

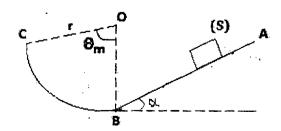
2pts

1.2-Sa puissance si le déplacement se fait en 2s.

1pt

2. Energie cinétique / 3Points

- 2.1-Calculer la vitesse d'un projectile de masse 4.0×10^{-3} kg qui possède une énergie cinétique de 2.0].
- 2.2- Quelle serait la hauteur maximale atteinte par ce projectile s'il est lancé verticalement vers le haut avec la vitesse précédente sachant que son mouvement est une chute libre? **2pts**


3. Mesure et incertitudes / 2Points

Déterminer la puissance dissipée par effet joule dans une résistance sachant qu'on a mesuré à 95% de confiance l'intensité du courant I circulant dans la résistance et la résistance elle-même. $I = (0.274 \pm 0.002)A$ et $R = (15.7 \pm 0.1)\Omega$.

Exercice 3: Utilisation des savoirs/8 Points

Partie A:/6Points

Un solide (S) de masse m dévale un plan incliné d'un angle α par rapport à l'horizontale puis remonte sur une portion circulaire BC de rayon r comme l'indique la figure ci-contre.

- 1) Dans l'hypothèse où les frottements sont négligeables :
- 1.1- Faire le bilan des forces qui s'exercent sur le solide (S) sur la portion AB et les représenter sur un schéma.

 1pt
- 1.2- Exprimer puis calculer la vitesse du solide au point B sachant que le solide est lancé du point A avec une vitesse de $36 \text{km}h^{-1}$.
- 2) En réalité, la vitesse en B est $V_B = 20m. s^{-1}$.
- 2.1-Donner une explication à cela.

1pt

- 2.2- Déterminer l'intensité de la force de frottement \overrightarrow{f} qui s'exerce sur le solide entre A et B. 1,5pt
- 3) Le solide aborde maintenant sans à-coup la remontée sur la portion BC sur laquelle les frottements sont négligeables. Déterminer l'angle définissant le point maximum C atteint par le solide (S).

 1,5pt

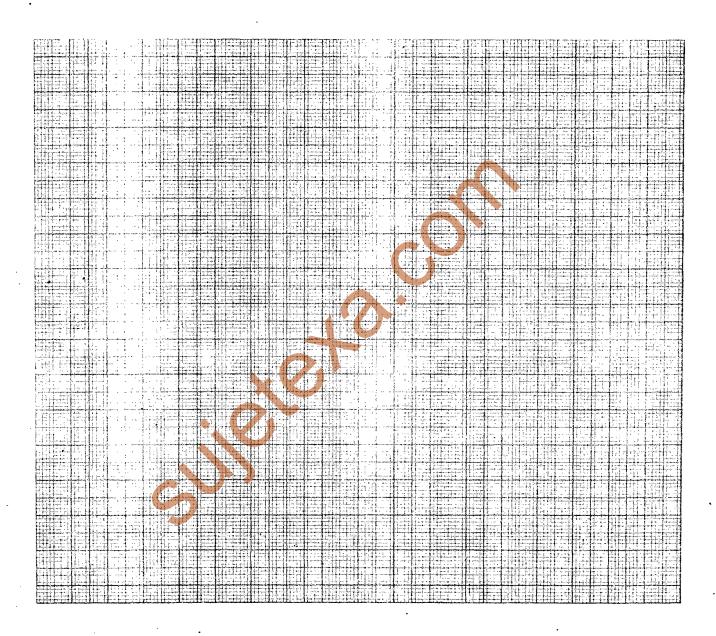
Données: d = AB = 200 m; OC = r = 50 m; g = 10 N. kg^{-1} ; $\alpha = 10^{\circ}$; m = 500 kg

Partie B:/2Points

Une bille B_1 de masse m_1 se déplaçant sur une ligne droite à la vitesse constante $V_1 = 15m. \, s^{-1}$ heurte une seconde bille B_2 de masse $m_2 = m_1$ au repos. Le choc étant élastique, trouver les vitesses V'_1 et V'_2 respectives des billes B_1 et B_2 après le choc sachant qu'elles gardent la même direction que celle de \overrightarrow{V}_1 avant le choc.

B- EVALUATION DES COMPETENCES / 16 Points

Dans le laboratoire du Collège VOGT, deux élèves de $1^{\text{ère}}$ D Paul et Alain trouvent un plan incliné d'un angle β par rapport à l'horizontale, utilisé pour étudier le mouvement d'un mobile autoporteur. Ils engagent une discussion sur la nature de ce plan incliné. Paul pense que le plan est rugueux tandis que Alain affirme qu'il est lisse. Afin de les départager, le professeur de physique réalise alors une expérience dans laquelle il lâche au sommet de ce plan incliné un solide de masse m et à l'aide d'un dispositif approprié il enregistre la vitesse V du mobile à chaque position d'abscisse x. Il obtient les résultats du tableau ci-après :


x(m)	Ó	0,050	0,125	0,220	0,330	0,455	0,510	0,770
$V(m.s^{-1})$	0	0,78	1,06	1,28	1,47	1,75	1,97	2,25

Tâche: A partir d'un raisonnement logique départage Paul et Alain,

Consignes: On tracera sur papier millimétré à l'échelle 1cm pour 0,100m et 2cm pour $1m^2/s^2$, le graphe $V^2 = f(x)$ que l'on exploitera.

Données: g = 10N. kg^{-1} ; m = 100g; $\beta = 30^{\circ}$

	 	 	
ANONYMAT:		•	

