REPUBLIQUE DU CAMEROUN

Paix - Travail - Patrie

MINISTERE DES ENSEIGNEMENTSSECONDAIRES

DELEGATION REGIONALE DU LITTORAL

DELEGATION DEPARTEMENTALE DU WOURI

REPUBLIC OF CAMEROON

Peace – Work - Fatherland

MINISTRY OF SECONDARY EDUCATION

REGIONAL DELEGATION OF LITTORAL

DIVISIONAL DELEGATION OF WOURI

INTEG BILINGUAL COLLEGE

INTEG BILINGUAL COLLEGE

EPREUVE DE : PHYSIQUE	NIVEAU: TleD	COEF : 2	DUREE: 3H	
Date: Mercredi 13 Octobre 2022	Examinateur: T. MISSANGAL			

ÉVALUATION SOMMATIVE N°1

PARTIE A : ÉVALUATION DES RESSOURCES / 24 POINTS

Exercice 1: Vérification des savoirs / 8points

1.1. **Définir** : analyse dimensionnelle, électrostatique (1x2)= 2pts

1.2. Enoncer la loi de coulomb

1.3. Compléter le tableau suivant / 1.5pt

Grandeurs fondamentales	Unité de référence	Dimension
Masse		
Température		
Intensité du courant		

- **1.4**. Quand dit-on qu'un corps est à répartition sphérique de masse? **0.5pt**
- 1.5. Expliquer l'expression corps ponctuel dans le cadre de la loi d'attraction universelle0.5pt
- 1.6. On donne l'expression de la force de frottement visqueuse en fonction de la vitesse $f=-\mu v$. Donner la dimension du coefficient de la viscosité μ , et en déduire son unité en fonction des unités de bases
- 1.7. dans le cadre du champ de gravitation expliquer le mot apesanteur 1pt
- **1.8.** L'intensité de la force électrostatique F qui s'exerce entre deux charges électriques positives q_1 et q_2 séparées d'une distance r dans le vide est donnée par expression ci-contre, l'unité de la permittivité (ϵ_0) dans le vide est : **0.5pt** $F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}, \quad m^3 kg^{-1} s^4 A^{-2}; \quad b) \quad m^{-3} kg^{-1} s^4 A^2; \quad c) \quad m^3 kg^{-1} s^4 A^2; \quad d) \quad m^{-3} kg^{-1} s^4 A^2; \quad e) \quad m^3 kg s^4 A^{-2}$

Exercice 2: Applications des savoirs / Spoints

2.1. La pression P d'un gaz, Son volume V et sa température absolue T sont liés par équation ci-contre : Ou A, B, et C sont des constances.

$$(P + \frac{A}{V^2})(V - B) = CT.$$

Déterminer la dimension et les unités de A; B et C

2pts

- **2.2.** un Astéroïde (A) de masse $m=1.35x10^3$ kg ,est situé à une altitude h=420km de la terre ;la terre est considérée à répartition sphérique de masse ,de rayon $R_T=6.38x10^3$ km et de masse $M_T=5.98x10^{24}$ kg. Représenter et donner les caractéristiques de la force de gravitation exercée par la terre sur l'Astéroïde (A) avec $G=6.67x10^{-11}$ USI **2pts**
- **2.3.** deux charges électriques q_A et q_B sont distantes de 10cm et placées sur horizontal , exercent l'une sur l'autre une force F=0.9N. Sachant que $q_A=-q_B$ avec $q_A>0$.
- a) Déterminer les caractéristiques de la force que qB exerce sur qA

1pt

b) Déterminer la valeur de q_B et q_A

1pt

2.4. Vérifier l'homogénéité de l'équation suivante :

2pts

 $T_0 = 2\pi \sqrt{\frac{mg}{\ell J}}$ où T_0 est un temps, m une masse, g l'intensité de la pesanteur, ℓ la longueur et J le moment d'inertie; $[J] = ML^2$.

Exercice 3: Utilisation des savoirs / 8points

3.1. Champ de gravitation terrestre / 4points

L'intensité du champ de gravitation g varie avec l'altitude z.

- 3.1.1. Dans quelles conditions peut-on assimiler l'intensité du champ gravitationnel g à l'intensité du champ de pesanteur go à la surface de la terre ?0.5pt
- **3.1.2.** Donner l'expression du champ de gravitation Terrestre g(z) en point d'altitude z en fonction de G, le rayon de la terre R_T , la masse de la Terre M_T et z puis en déduire son expression go à la surface de la Terre.
- **3.1.3.** Déterminer l'expression du champ de gravitation g(z) en point d'altitude z en fonction de go, R_T et z.
- **3.1.4.** Montrer que pour de faibles altitudes z << RT, $g(z) = go(1-2z/R_T)$.
- **3.1.5.** Déduire l'expression de la variation (go g(z))/go de l'intensité du champ de pesanteur et déterminer l'altitude maximale Z_m si l'on veut que la variation relative ne dépasse pas 3%.

3.2. Incertitude / 4points

Un groupe d'élève de la classe de 1^{er}D réalise une série de mesure de l'intensité I du courant d'une batterie de téléphone neuf bien chargée, avec un ampèremètre numérique dont on peut lire sur la notice : **précision 1% lecture +2digits** .Les résultats obtenus sont les suivants :

I (mA) 601 603 600 602	
------------------------	--

- **3.2.1.** Calculer la valeur moyenne de l'intensité de cette batterie **0.5pt**
- **3.2.2.** Calculer l'incertitude type liée au mesurage et en déduire sont son incertitude élargie, sachant que le mesurage a été effectué avec un niveau de confiance de 95%. On prendra comme lecture la valeur moyenne de I **1.5pt**
- 3.2.3. Ecrire convenablement le résultat de la mesure puis donner son intervalle de confiance1pt
- 3.2.4. Sachant que la vraie valeur de l'intensité du courant de cette batterie est 600mA,l'ampèremètre utilisé est-il fidèle ? Juste ?

PARTIE B: ÉVALUATION DES COMPETENCES / 16POINTS

Compétence visée: Utiliser le champ gravitationnel pour la recherche d'un corps céleste riche.

La surexploitation des ressources de notre planète fait l'objet d'une prise de conscience mondiale. Plusieurs pays se sont déjà lancés dans l'exploration véritable et durable des corps célestes (document 1), dans le but d'utiliser leurs ressources naturelles. Ainsi, une étude de la NAZA révèle que le champ gravitationnel crée par l'un des plus riches de ces corps célestes, compenserait le champ de gravitation terrestre à une distance de 342105km de la Terre

Document 1 : Corps célestes riches en ressources naturelles

Corps célestes	Planète Venus	Planète Mars	Lune	Keppler-22b
Distances Terre -Corps célestes (km)	41,4×10 ⁶	6,2×10 ⁷	3,8×10 ⁵	5,9×10 ¹⁵
Rapports masse Terre/masse corps	1,2	9,3	81,5	3,1×10 ⁻⁶

A partir d'un raisonnement scientifique, retrouve le corps céleste le plus riche en ressources naturelles.

16 pts