

Republic of Cameroon	
Peace-Work-Fatherland	
MINESEC	
Genius Corporation	

Département de Mathématiques et sciences physiques	Année académique : 2022/2023
Classes : Premières industriels	Epreuve de MATHEMATIQUES
Durée : 02 heures	Contrôle Continu 1 (CC1)

Proposé par **NENGOUEYE TAKAM B.V.**

Exercice 1 : Equations et Systèmes d'équations / 08 pts

1. Résoudre dans \mathbb{R} , \mathbb{R}^2 ou \mathbb{R}^3 : **04**pts

(a)
$$\sqrt{x+3} = 4$$
,

(a)
$$\sqrt{x+3} = 4$$
, (b) $x^2 - 2\sqrt{3}x \le -22$

(c)
$$\begin{cases} x^2 + y^2 = 5 \\ xy = 2 \end{cases}$$

(c)
$$\begin{cases} x^2 + y^2 = 5 \\ xy = 2 \end{cases}$$
 (d)
$$\begin{cases} x + 2y - z = 2 \\ -2x + y + 3z = 9 \\ -x - 3y + z = -4 \end{cases}$$

- 2. Soit P le polynôme défini par $P(x) = 2x^3 + 7x^2 2x 3$.
 - 2.1. Montrer que -1 est une racine de P;

0,5pt

2.2. Déterminer les réels a, b et c tels que : $P(x) = (x + 1)(ax^2 + bx + c)$;

1,5pt

2.3. On considère le polynôme $Q(x) = 2x^2 + 5x - 3$.

a. Justifier que P(x) = (x + 1)(Q(x));

0,5pt

b. Résoudre dans \mathbb{R} l'équation Q(x) = 0;

0.5pt

2.4. Résoudre dgns \mathbb{R} l'équation P(x) = 0;

0,5pt

2.5. Déduire de ce qui précède la solution de l'inéquation $P(x) \ge 0$. **0**, **5**pt

Exercice 2: Nombres complexes/05pts

Le plan complexe est muni d'un repère orthonormé (O,I,J). Soit ABCD un quadrilatère dont les affixes des points A, B et C sont respectivement : $z_A = 1 + i$, $z_B = \sqrt{3} - i$ et : $z_C = -2i$

- 1. Placer les points A, B et C dans le repère (O,I,J); 1, 5*pt*
- On suppose que ABCD est un parallélogramme, déterminer l'affixe et construire le point C dans le repère (O,I,J) 1pt
- 3. Donner les formes algébriques de : $\frac{1}{ZA}$ et $\frac{1}{ZB}$;

4. Calculer les modules et les formes conjuguées des nombres complexes

suivants:
$$z_1 = \frac{z_A \times z_B}{z_C \times z_D}$$
, $z_2 = (z_D)^2$

2pts

Exercice 3: Trigonométrie/07pts

1. Démontrer les propriétés suivantes :

(p1)
$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$
 (p2) $\cos 2x = -1 + 2\cos^2 x$ **1,5pt**

2. Résoudre dans \mathbb{R} puis dans $[-\pi; \pi[$ les équations trigonométriques

suivantes : (E1) :
$$\cos 2x = -\frac{1}{2}$$
 ; $\sin \left(x - \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$

2pts

- 3. On considère l'équation (E): $2x^2 3x + 1 = 0$
- 3.1. Résoudre dans \mathbb{R} l'équation $2x^2 3x + 1 = 0$

0,5pt

3.2. Déduire dans $[0; \pi]$ les solutions de l'équation $2\sin^2 x - 3\sin x + 1 = 0$, puis représenter leurs images sur le cercle trigonométrique. 3pts

LA QUALITÉ DE LA PRÉSENTATION DE VOTRE COPIE EST UN ATOUT!

Page 2/2

1,5pt