

FURTHER MATHEMATICS PAPER 1 0775

GOVERNMENT BILINGUAL HIGH SCHOOL YAOUNDE MOCK GCE

APRIL 2021	ADVANCED LEVEL
Centre Number	:
Centre Name	
Candidate Identification No.	
Candidate Name	

Mobile phones are NOT allowed in the examination room.

MULTIPLE CHOICE QUESTION PAPER

One and a half hours
INSTRUCTIONS TO CANDIDATES

Read the following instructions carefully before you start answering the questions in this paper. Make sure you have a soft HB pencil and an eraser for this examination.

- 1. USE A SOFT HB PENCIL THROUGHOUT THE EXAMINATION.
- 2. DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

Before the examination begins:

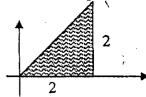
- 3. Check that this booklet is headed Advanced Level 0775 Further Mathematics 1.
- 4. Fill in the information required in the spaces above.
- 5. Fill in the information required in the spaces provided on the answer sheet using your HB pencil.
- 6. Answer ALL the 50 questions in this examination. All questions carry equal marks.
- 7. Calculators are allowed.
- 8. Each question has FOUR suggested answers: A, B, C, and D. Decide which answer is appropriate.
- 9. Mark only one answer for each question. If mark more than one answer, you will score a zero for that question. If you change your mind about an answer, erase the first mark carefully, then mark your new answer.
- 10. Avoid spending too much time on any one question. If you find a question difficult, move on to the next question. You can come back to this question later.
- 11. Do all rough work in this booklet using the blank spaces in the question booklet.
- 12. At the end of the examination, the invigilator shall collect the answer sheet first and then the question booklet. **DO NOT ATTEMPT TO LEAVE THE EXAMINATION HALL WITH IT.**

_'	ΤI	1	R	Ni	0	١	//	F	R	
_	11	J	n	IV	\circ	v	1		n	ı.

- 1. $\int_0^x \cosh 4x dx =$
 - $\mathbf{A} \qquad \frac{1}{4}\sinh 4x + k$
 - $\mathbf{B} \qquad -\frac{1}{4}\sinh 4x + k$
 - $C \qquad -\frac{1}{4}\sinh 4x$
 - $\mathbf{D} \qquad \frac{1}{4}\sinh 4x$
- 2. The angle between i and i k is
 - A 900
 - B 60°
 - C 450
 - D 30°
- 3. The invariant point of the transformation $w = \frac{z-i}{1+i}$ is
 - A -
 - В --
 - \mathbf{C} i
 - **D** 1
- 4. The integrating factor of the differential equation

$$x\frac{dy}{dx} + 2y = \sin x \text{ is } \bullet$$

- A 2:
- $\mathbf{B} = x^2$
- $C e^{2x}$
- $\mathbf{D} = e^{x^2}$
- 5. The point of the polar curve $r = \sin \theta$ at which the tangent is perpendicular to the initial line is
 - $\mathbf{A} \qquad (0,0)$
 - $\mathbf{B} = (\frac{1}{2}, \frac{\pi}{6})$
 - $C \qquad (\frac{\sqrt{2}}{2}, \frac{\pi}{4})$
 - $\mathbf{D} = (\frac{\sqrt{3}}{2}, \frac{\pi}{3})$
- 6. Given that the set $\{1,-1,i,-i\}$ under multiplication in \mathbb{C} is a group, then the inverse of i is
 - A.
 - B -1
 - C
 - n
- 7. If the period of a compound pendulum is $\frac{\pi}{2}\sqrt{\frac{a}{a}}$, then the length


of the equivalent simple pendulum is

- $A = \frac{1}{2}a$
- $R = \frac{1}{a}a$
- $C = \frac{1}{a}a$
- p 10
- 8. The converse of the statement $p \Rightarrow q$ is
 - $A \sim p \Rightarrow 0$
 - $\mathbf{B} \quad q \Rightarrow p$
 - $C \sim q \Rightarrow p$
 - $\mathbf{p} \sim q \Rightarrow \sim p$
- 9. The work done by a force F in displacing a particle by d is
 - A
 - F•d F×d

- $\mathbf{p} \quad |\mathbf{F} \times \mathbf{d}|$
- 10. One of the solutions of the linear congruence

$$2x + 5 \equiv 2 \pmod{7}$$
 is

- A
- В
- **C** 8
- Ď s
- 11. The value of [4.9] + [-2.1] where [x] denotes the greatest integer function is
 - A 8
 - B 2.8
 - **C** 2
 - D
- 12. By using a Theorem of Pappus or otherwise, the distance from the x axis of the centroid of the shaded region is
 - $\mathbf{A} = \frac{2}{3}\pi$
 - B 4π
 - C 8/3
 - D $\frac{16}{\pi}\pi$

- 13. The first three terms that approximate the expansion of ln(4 + 2x) in ascending powers of x is
 - $A \frac{1}{2}x \frac{1}{8}x^2 \frac{1}{24}x^3$
 - $\frac{1}{2}x + \frac{1}{8}x^2 + \frac{1}{24}x^3$
 - C $\ln 4 \frac{1}{2}x \frac{1}{8}x^2$
 - $D \qquad \ln 4 + \frac{1}{2}x \frac{1}{8}x^2$
- 14. If X is a random variable such that E(X) = 3, then E(2X 1) =
 - A 5
 - B 6
 - **C** 11
 - n 11
- 15. A particle moving with velocity $(i j)ms^{-1}$ receives an impulse, I, which changes its velocity to $(j + k)ms^{-1}$. The value of I is
 - $\mathbf{A} \qquad (\mathbf{i} 2\mathbf{j} + \mathbf{k}) \mathbf{N} \mathbf{s}$
 - $\mathbf{B} \qquad (-\mathbf{i} 2\mathbf{j} \mathbf{k}) \mathbf{N} \mathbf{s}$
 - C (i + k)Ns
 - $\mathbf{D} \qquad (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \mathbf{N} \mathbf{s}$
- 16. The eccentricity, e, of a rectangular hyperbola is
 - $\mathbf{A} \quad e = 0$
 - **B** $_{e}$ 0 < e < 1
 - С
 - $\mathbf{D} \qquad e = \sqrt{2}$
- 17. A reduction formula for $I_n = \int_1^e x(\ln x)^n dx$, $n \ge 1$, is
 - $\mathbf{A} \qquad 2I_n = e^2 I_{n-1}$
 - $B \qquad 2I_n = e^2 nI_{n-1}$
 - $C \qquad I_n = e^2 I_{n-1}$
 - $D I_n = e^2 nI_{n-1}$
- 18. A particle P moves with constant angular speed w on the curve with polar equation $r=ae^{\theta}$. The transverse component of the velocity of P is

$$\mathbf{D} = ae^{\theta}$$

19. Given that
$$\frac{dy}{dx} + 3y = 0$$
 and that $y = 2$ when $x = 0$, the quadratic approximation for y is

A
$$2 + 6x - 18x^2$$

B
$$2-6x+18x^2$$

C
$$2 + 6x - 9x^2$$

D
$$2-6x+9x^2$$

$20. \cosh(\ln 4) =$

$$A \frac{17}{4}$$

$$D = \frac{15}{8}$$

21.
$$\frac{2x^3}{(x-1)^2} \equiv px + q + \frac{r}{x-1} + \frac{s}{(x-1)^2}, \ p,q,r,s \in \mathbb{R}.$$
 The

values of p and q respectively are

22. The number of divisors (factors) of 252 is

23. The period of the damped harmonic motion defined by

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 8x = 0, \text{ is}$$

$A = \frac{1}{2}\pi$

$$\mathbf{C}$$
 2π

$$\mathbf{D} = 4\pi$$

24. Two asymptotes to the curve
$$y = \frac{x^3 + 1}{x^2 + x}$$
 are

$$x = -1, y = x + 1$$

$$\mathbf{R} \qquad x = -1, \, y = x - 1$$

$$C \qquad x = 1, \, y = x - 1$$

$$x = -1, y = x - 1$$

25. The cofactor of 3 in the matrix T, $T = \begin{bmatrix} 9 & 3 & 5 \\ -1 & 7 & 4 \\ 6 & 0 & 2 \end{bmatrix}$ is

26. Which one of the following series is convergent

$$\mathbf{A} \qquad \sum_{r=7}^{\infty} r(\frac{3}{r} + 2)$$

$$\sum_{r=1}^{\infty} \frac{1}{5^r + 1}$$

$$\mathbf{B} \qquad \sum_{r=0}^{\infty} \frac{1}{2^{-r}}$$

$$\mathbf{D} \qquad \sum_{r=1}^{\infty} (-1)^{r+1}$$

27. Given that the truth value of statement
$$p$$
 is True (T) and the truth value of statement q is False (F), which one of the compound statements below has truth value T.

$$\mathbf{A} \quad p \lor q$$

$$\mathbf{B} \qquad p \lor \sim q$$

$$\mathbf{C} \qquad p \Rightarrow q$$

$$\mathbf{D} \qquad p \Leftrightarrow$$

28. If ae^{-4x} is a particular integral of the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 5e^{-4x}$$
 then the value of a is

$$\mathbf{D}_{\perp} = -2$$

$$\mathbf{A} \qquad r = a(1 + \cos \theta)$$

$$B \qquad r = a \sin \theta$$

$$C \qquad r = a \sin 3\theta$$

$$\mathbf{D} \qquad r = a(1 + 2\sin\theta)$$

30. The value of k for which the function
$$f(x)$$
, is continuous at

$$x = 0$$
, where $f(x) = \begin{cases} \frac{\sin 3x}{x}, & x < 0 \\ \frac{x^2 + k}{1 - k}, & x \ge 0 \end{cases}$, is

31. Using Simpson's rule with 3 ordinates,
$$\int_0^2 4^x dx =$$

$$A = \frac{2}{3}$$

$$\int \frac{dx}{\sqrt{3+4x^2}}$$

A
$$2x = \sqrt{3} \tan u$$

$$\mathbf{B} \qquad 2x = \sqrt{3} \sinh u$$

$$\mathbf{C} \qquad 2x = \sqrt{3} \cosh u$$

$$2x = \sqrt{3} \tanh u$$

33. If the Cartesian coordinates of points
$$O$$
, P , Q , and R are $(0,0,0)$, $(2,0,1)$, $(3,1,2)$ and $(-1,3,0)$ respectively, then the volume of the tetrahedron $OPQR$ is

34. If
$$f(x) = \begin{cases} k(3-x), & x = 0,1,2\\ 0, & \text{elsewhere} \end{cases}$$

- $1. \int_0^x \cosh 4x dx =$
 - $\frac{1}{4}\sinh 4x + k$
 - $-\frac{1}{4}\sinh 4x + k$
 - $-\frac{1}{4}\sinh 4x$ C
 - $\frac{1}{4}\sinh 4x$
- 2. The angle between i and i k is
 - 90^{0} Α
 - В 60^{0}
 - C 45^{0}
 - 30^{0}
- 3. The invariant point of the transformation $w = \frac{z-i}{1+i}$ is

 - B
 - C
- 4. The integrating factor of the differential equation

$$x\frac{dy}{dx} + 2y = \sin x \text{ is } -$$

- 2x
- В x^2
- C e^{2x}
- 5. The point of the polar curve $r = \sin \theta$ at which the tangent is perpendicular to the initial line is
 - (0,0)
 - В
 - C
- Given that the set $\{1,-1,i,-i\}$ under multiplication in \mathbb{C} is a group, then the inverse of i is
 - A
 - В
 - C
- 7. If the period of a compound pendulum is $\frac{\pi}{2}\sqrt{\frac{a}{a}}$, then the length

of the equivalent simple pendulum is

- В
- \mathbf{C}
- 8. The converse of the statement $p \Rightarrow q$ is
 - $\sim p \Rightarrow q$
 - $q \Rightarrow p$ \mathbf{B}
 - C $\sim q \Rightarrow p$
 - $\sim q \Rightarrow \sim p$
- 9. The work done by a force F in displacing a particle by d is
 - $\mathbf{F} \cdot \mathbf{d}$
 - $\mathbf{F} \times \mathbf{d}$ B

- $\mathbf{F} \times \mathbf{d}$
- 10. One of the solutions of the linear congruence

$$2x + 5 \equiv 2 \pmod{7}$$
 is

- A
- B
- C
- 11. The value of [4.9] + [-2.1] where [x] denotes the greatest integer function is
 - 3

 - В 2.8
 - C
- 12. By using a Theorem of Pappus or otherwise, the distance from the x – axis of the centroid of the shaded region is

 - В
 - C
 - $\frac{16}{\pi}$
- 2
- 13. The first three terms that approximate the expansion of ln(4+2x) in ascending powers of x is
 - $\frac{1}{2}x \frac{1}{8}x^2 \frac{1}{24}x^3$
 - $\frac{1}{2}x + \frac{1}{8}x^2 + \frac{1}{24}x^3$
 - $\ln 4 \frac{1}{2}x \frac{1}{8}x^2$
 - $\ln 4 + \frac{1}{2}x \frac{1}{8}x^2$
- 14. If X is a random variable such that E(X) = 3, then E(2X 1) =
 - A
 - В б
 - C 11
- 15. A particle moving with velocity (i j)ms⁻¹ receives an impulse, I, which changes its velocity to $(j + k)ms^{-1}$. The value of I is
 - $(\mathbf{i} 2\mathbf{j} + \mathbf{k})$ Ns
 - $(-\mathbf{i} 2\mathbf{j} \mathbf{k})$ Ns В
 - (i + k)Ns \mathbf{C}
 - (i + 2j + k)Ns
- 16. The eccentricity, e, of a rectangular hyperbola is

 - B 0 < e < 1e = 1
 - C
 - $e = \sqrt{2}$
- 17. A reduction formula for $I_n = \int_1^e x(\ln x)^n dx$, $n \ge 1$, is
 - $2I_n = e^2 I_{n-1}$
 - $2I_n = e^2 nI_{n-1}$
 - $C I_n = e^2 I_{n-1}$
 - $I_n = e^2 nI_{n-1}$
- 18. A particle P moves with constant angular speed w on the curve with polar equation $r = ae^{\theta}$. The transverse component of the velocity of P is

1 .	7 0
A - 6	$\mathbf{D} = \frac{7}{5}ma^2$
D 0	42 TS - 4 O 41 - 1 1
C 1	43. If x < 0, then x - x x =
р 6	$\mathbf{A} = x - x^2$
	$\mathbf{B} = -x + x^2$
Fiven that the structure $(\{a,b,c,d,e,f\},\otimes)$ is a group with	$\mathbf{C} = -x - x^2$
identity element e. Which one of the following structures is a	
subgroup?	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\mathbb{A} \qquad \left(\left\{ a,b\right\} ,\otimes \right)$	44. The argument of the complex number $z = 1 - e^{\frac{1}{2}i\pi}$ is
$\mathbf{B} \qquad \left(\left\{ a,b,c,e\right\} ,\otimes \right)$	$\mathbf{A} = \frac{1}{3}\pi$
$\mathbf{C} = (\{a,c,f\},\otimes)$	$\mathbf{B} = \frac{1}{6}\pi$
$\mathbf{p} \qquad \left(\left\{ a,d,e\right\} ,\otimes \right)$	$C = \frac{1}{2}\pi$
35. Given the complex number $z = \cos \theta + i \sin \theta$, the expression	6
for $z^4 + z^2 - z^{-2} + z^{-4}$ is	$D = -\frac{1}{3}\pi$
	45. A force $F = (4i - j + 2k)N$ acts through the point with
$egin{array}{lll} \mathbf{A} & 2i\cos4\theta + 2i\sin2\theta \ \mathbf{B} & 2i\cos4\theta + 2\sin2\theta \end{array}$	position vector $(-i + 2j + 3k)$ in. The vector moment of F
$C \qquad 2\cos 4\theta + 2\sin 2\theta$	
$\mathbf{D} = 2\cos 4\theta + 2\sin 2\theta$	about the origin in Nm is $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$
37. The second non-zero terms in the Maclaurin's series expansion	$ \begin{array}{ccc} \mathbf{i} + 2\mathbf{j} - \mathbf{k} \\ \mathbf{B} & 7\mathbf{i} + 14\mathbf{j} - 7\mathbf{k} \end{array} $
of $\sinh 3x$ is	C 3i + 2j - 5k
$\mathbf{A} = 27x^3$	$\mathbf{p} = 10\mathbf{i} + 16\mathbf{j} - 12\mathbf{k}$
$\begin{array}{ccc} B & -27x^3 \\ & & \end{array}$	46. Which one of the following in NOT true for definite integrals
$C = \frac{9}{2}x^3$	$\mathbf{A} \qquad \int_a^b f(x)dx = \int_a^b f(t)dt$
$\mathbf{D} \qquad -\frac{9}{2}x^3$	$\mathbf{B} = \int_a^b f(x)dx = -\int_a^a f(t)dt$
38. The Cartesian equation of the midpoint M of $P(4t, \frac{1}{2})$ and	
30. The Cartesian equation of the indpoint in of 1 (10, 1) and	$\mathbf{C} \qquad \int_a^b f(x)dx = \int_a^m f(x)dx + \int_a^b f(x)dx$
$Q(t, \frac{4}{t})$ as t varies is	J_a J_a J_m
$\mathbf{A} \qquad xy = 1$	$\mathbf{D} \qquad \int_{-a}^{a} f(x) dx = 0$
B $xy = 16$	
$C \qquad xy = 25$	47. Which one of the following is true of Normal distributions
$\vec{D} = 4xy = 25$	A The distribution is discrete B The mean is zero
39. Which one of the following equations has no solution in Z?	B The mean is zero C The distribution is symmetric about the mean
A $2x + 3y = 9$	D The mean is less than the standard deviation
$\mathbf{B} 8x + 6y = 26$	48. A particle P of mass 8m falls in a medium in which the
$\mathbf{C} = 6x + 9y = 14$	resistance to motion is one quarter of its weight. The equation
$\begin{array}{ccc} & & & & & & & & & & & & \\ & & & & & &$	of motion of P is
	$\mathbf{A} 3g = 4\frac{d\mathbf{v}}{dt} \qquad \qquad \mathbf{C} \qquad g = 4\frac{d\mathbf{v}}{dt}$
40. The complex transformation $z \to w$ given by $w = 3z^*$ where	
z^* is the conjugate of z represents	$\mathbf{B} \cdot -3g = 4\frac{d\mathbf{v}}{dt} \qquad \qquad \mathbf{D} \qquad -g = 4\frac{d\mathbf{v}}{dt}$
A A reflection in the real axis	40 The man value of 1 fee 1 < 4 < 1 is
B A reflection in the imaginary axis	49. The mean value of $\frac{1}{x}$ for $\frac{1}{2} \le x \le 1$ is
C A rotation through 180°	A $2\ln 2$ B $\ln 2$ C $-\ln 2$ D $-2\ln 2$
D A clockwise rotation through 90°	50. Which one of the pairs of vectors below are a basis for \mathbb{R}^2
1. The cumulative distribution function $F(x)$ of a discrete random	(1) (2)
variable X is given in the table below. $E(X) = -$	$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
	(*) (*)
x 1 2 3	(1) (0)
$F(x)$ $\frac{1}{6}$ $\frac{5}{6}$ 1	$\begin{bmatrix} \mathbf{B} & \begin{bmatrix} 0 \end{bmatrix} \text{ and } \begin{bmatrix} 2 \end{bmatrix}$
A 11 B 2 C 13 D 5	(0) (2)
The moment of inertia of a solid sphere of mass m and radius a	$\begin{bmatrix} \mathbf{C} & 0 \end{bmatrix}$ and $\begin{bmatrix} -4 \end{bmatrix}$
mentent of merita of a posta opitato of illano in atta fautan a	1

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

D

and

is a probability mass function of X, then the value of k is

about a tangent of the sphere is

 $\frac{2}{5}ma^2$

A