GOVERNMENT BILINGUAL HIGH SCHOOL YAOUNDE

School Year 2020/2021

DEPARTMENT: MATHEMATICS: Duration 1hr 30min

EVALUATION 5: SUBJECT TITLE: FURTHER MATHEMATICS

STUDENTNAME(S).....DATE.....LOWER SIXTH

[*B*] 4

[*C*] 5

[D] 26

-1:0

SECTION A: Chose the letter corresponding to the correct answer

- 1. One of the solutions of the congruence equation $2x + 5 \equiv 2 \pmod{7}$ is
- 2. The cofactor of 3 in the matrix $T = \begin{pmatrix} 9 & 3 & 5 \\ -1 & 7 & 4 \\ 6 & 0 & 2 \end{pmatrix}$ is

[*A*] 3

$$[A] - 26$$
 $[B] - 12$ $[C] 12$

- 3. Which of the following sequence is convergent
 - $[A] \sum_{r=0}^{\infty} r(\frac{3}{r}+2) [B] \sum_{r=1}^{\infty} \frac{1}{5^{r}+1} [C] \sum_{r=0}^{\infty} \frac{1}{2^{-r}} [D] \sum_{r=1}^{\infty} (-1)^{r+1}$
- 4. Given the structure ({a, b, c, d, e, f},*) is a group with identity element e, which one of the following structures is a sub-group?

 $[A] (\{a, b\}, *) \quad [B] (\{a, b, c, e\}, *) \quad [C] (\{a, c, f\}, *) \quad [D] (\{a, d, e\}, *)$

5. Which one of the following equations has no solution in \mathbb{Z} ?

 $[A] 2x + 3y = 9 \quad [B] 8x + 6y = 26 \quad [C] 6x + 9y = 14$ [D] 15x + 20y = 50

SECTION B: Answer all questions

1. Two recursive sequences u_n and v_n are defined by

$$u_0 = 9, u_{n+1} = \frac{1}{2}u_n - 3.$$
 $v_n = u_n + 6.$

i) Show that v_n is geometric sequence with common ratio $r = \frac{1}{2}$ and $v_0 = 15$

ii) Calculate

 $S_n = \sum_{k=1}^n v_k$ in terms of n.

iii) Hence or otherwise find

$$T_n = \sum_{k=0}^n u_k$$
 in terms of n.

iv) **E**valuate

$$\lim_{n\to\infty}S_n \quad and \quad \lim_{n\to\infty}T_n$$

Another sequence w_n is defined by $w_n = \ln(v_n)$

Show that w_n is an arithmetic sequence with common difference $-\ln 2$

vi) Calculate

2.

3.

$$T_n = \sum_{k=0}^{\infty} w_k$$

Given two matrices **A** and **B where** $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$ and
 $B = \begin{pmatrix} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{pmatrix}$ Find the matrix product **AB** and **BA**.
Hence solve the system of equations $x + 2y + 3z = -5$
 $2x + 4y + 5z + 3$
 $3x + 5y + 6z = 1$
Find the value of x for which the matrix $\begin{pmatrix} 2 & 1 & 1 \\ 3 & x & 3 \\ -1 & -2 & 4 \end{pmatrix}$ is singular.