ANNÉE SCOLAIRE	EVALUATION	EPREUVE	CLASSE	DUREE	COEFFICIENT 03	
2021/2022	N°6	Physique	2nde C	02H00		
Professeur: M. BI	ESSOMO Eric	jour : quan	tité :			
FO-BASN: 30/04/2022	11:00					
Noms:		Préno	ms:			

Date :	Classe	N° table	_	
Appréciation d	u niveau de la compétence	par le professeur: Note et appréciati	on	
	Non Acquise (NA)	En cours d'acquisition((AE)	Acquis (A)	Expert (E)
		NOTE FINALE DE L'ELEVE		
Evaluation des ressources		/		Note totale / 20
Evaluation des	compétences	/		

EVALUATION DES RESSOURCES / 24 Pts

Exercice 1: Vérification des savoirs/8 pts

- 1- Définir: tension seuil, transistor, droite charge d'un transistor.
 2- Donner la différence entre une diode à jonction et une diode Zener.
 (1 pt
- 3- Réponds par Vrai ou Faux aux affirmations suivantes : (2 pts)
- 3.1 Lorsqu'elle est polarisée en directe, la diode Zener se comporte tout simplement comme une diode à jonction.
- 3.2. Le trait vertical sur le symbole normalisé d'une diode désigne le côté où se situe l'anneau circulaire sur la diode.
 - 3.3. Un transistor est à l'état bloqué lorsque sa jonction collecteur-émetteur est bloquée ;
 - 3.4. Lorsqu'un transistor est saturé, il se comporte comme un interrupteur ouvert.
- 4- Choisir la bonne réponse. 2 pts
 - 4.1. L'électrode de sortie d'un transistor bipolaire est :
 - a) la base b) l'émetteur
- c) le collecteur
- 4.2. L'amplification en courant d'un transistor a pour expression :

a)
$$\beta = \frac{I_B}{I_C}$$

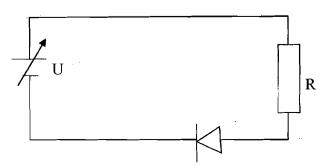
b)
$$\beta = \frac{I_C}{I_R}$$

c)
$$\beta = \frac{I_E}{I_C}$$

- 4.3. Une diode est un dipôle :
 - a) actif
- b) passif dissymétrique
- c) passif symétrique
- 4.4. Une diode à jonction de tension seuil Us conduit le courant électrique lorsque :

a)
$$U_{AB} = U_{S}$$

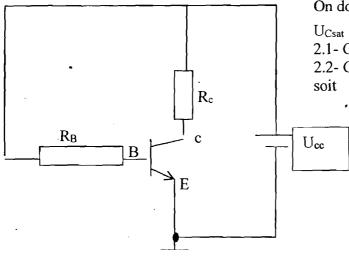
b)
$$U_{AB} < U_{S}$$
.


c)
$$U_{AB} > U_{S}$$

Exercice 2: Application direct des savoirs / 8 pts

I-<u>Diodes</u>:

/ 4 pts


Le montage de la figure ci-contre est alimenté par un générateur de tension U réglable.

La résistance du résistor est $R=10\Omega$ Celle de la diode est négligeable, la tension seuil de la diode est $U_s=0,6V$. Dans chacun des cas suivants, déterminer l'intensité du courant dans le circuit :

II - Transistors: / 4 Pts

Soit le montage ci-contre :

On donne $U_{CC} = 12V$, $U_{BE} = 0.7V$

 $U_{Csat} = 0.1V, Rc = 22 K\Omega \text{ et } \beta = 250$

2.1- Calculer le courant de base de saturation. 2 pts 2.2- Calculer la valeur de R_B pour que le transistor

saturé. 2 pts

Exercice 3: Utilisation des acquis / 8 pts

Partie 1: Diode / 4 pts

On veut tracer la caractéristique tension - intensité I = f(U) d'une diode à jonction au germanium à partir des résultats consignés dans le tableau suivant :

U(v)	-0,5	0,1	0,2	0,5	7	0,6	0,8	0,9
I(mA)	0	0	0	0		5	60	100

1.1 Tracer la caractéristique I = f(u)

Echelle: 1cm pour 0,1

1 cm pour 10mA

- 1.2 Déterminer la tension seuil U_s de cette diode.
- · 1.3 Ecrire l'équation de la partie linéaire. 1 pt

Partie 2: Résistors / 4 pts

Soit l'association (A,B) de trois résistors en dérivation :

$$R_2 = 2R_1$$
 et $R_3 = 3R_1$

$$I_1 = 120 \text{mA}$$

2.1. Calculer l'intensité du courant électrique

Dans chaque résistor.

2 pts

2.2. En déduire la valeur de l'intensité I du courant Electrique dans l'association. 1 pt

2.3. $S_i R_3 = 18\Omega$, calculer U_{AB} .

1 pt

II- EVALUATION DES COMPETENCES / 16 pts

Situation – problème : Deux élèves de la classe de 2^{nde} C du collège. ABENA et FOUDA se rendent au laboratoire de physique. Ils réalisent que leur camarade a effectué une expérience sur la réfraction de la lumière où le milieu 1 est l'air et le milieu 2 inconnu. Les mesures obtenues sont consignées dans le tableau suivant: