Ministère des Enseignements Secondaires LYCEE DE GUIDER/ GHS GUIDER

Département de mathématiques **Année scolaire** : 2020-2021

Classe: 1ère D

Evaluation continue N° 1

Durée : 3h Coefficient : 4

EPREUVE DE MATHEMATIQUES :

<u>Compétences visées</u> : polynômes, équations, inéquations et systèmes linéaires $dans \mathbb{R}^2$ et \mathbb{R}^3

PARTIE A: EVALUATION DES RESSOURCES/ 15.5 PTS

Exercice 1 (0,5pt + 0,5pt + 1pt + 1pt + 1pt = 4points)

Dans le tableau ci-dessous, pour chacune des affirmations/questions inscrites dans la colonne gauche, une seule des quatre réponses qui vous sont proposés est exacte ; préciser pour chaque question/affirmation, laquelle.

Question	Réponse N°1	Réponse N°2	Réponse N°3	Réponse N°4
1) Le polynôme P défini par : $P(x) = x^2 - x + 3$	Admet une racine double	N'admet pas de racine	Admet deux racines distinctes	Est toujours négatif
2) Le polynôme Q défini par : $Q(x) = x^2 - 2x\sqrt{2} + \sqrt{3}$	Admet une racine double	Admet deux racines de même signe	Admet deux racines de signes opposés	N'admet pas de racine
3) L'ensemble solution de l'inéquation $-x^2 - 3x + 4 > 0$ est :	S =] -4;1[S = [-4; 1]	S = [-4; 1[S =] - 4; 1]
4) L'ensemble solution de l'inéquation $2x^2 + x + 5 \le 0$ est	$S = \{-23\}$	$S = \mathbb{R}$	$S = \{\emptyset\}$	$S = \emptyset$
5) Les longueurs des côtés d'un champ rectangulaire de périmètre $38m$ et d'aire $90m^2$ sont :	longueur = 10m et largeur = 9m	longueur = -10m et $largeur = -9m$	longueur = 9m et $largeur = 10m$	longueur = -9m et $largeur = -10m$

Exercice 2 4 points

Consider the polynomial P defined by : $P(x) = 9x^3 + 20x^2 - 111x + 70$ and the equation (E): $9x^2 - 25x + 14 = 0$.

1.	a) Solve in \mathbb{R} the equation (E) .	0,5pt
	b) Deduce the resolution in \mathbb{R} the equation $\sqrt{x+2} = 3x - 4$.	1pt
2.	a) Check that – 5 is a root of the polynomial P.	0,5pt
	b) Deduce from question 1 a) the solutions of the equation $P(x) = 0$.	1pt
	c) Then solve in \mathbb{R} , the inequation $P(x) > 0$.	1pt

1) vérifier que $\sqrt{3 + 2\sqrt{2}} = 1 + \sqrt{2}$.

2) Résoudre dans \mathbb{R} l'équation $2x^2 + (1 - \sqrt{2})x - \frac{\sqrt{2}}{2} = 0$.

3) Résoudre dans \mathbb{R} l'inéquation $2x^2 + (1 - \sqrt{2})x - \frac{\sqrt{2}}{2} \le 0$.

Exercice 4 5 points

1) Résoudre dans \mathbb{R}^3 par la méthode du pivot de GAUSS le système : $\mathbf{1}, \mathbf{5}pt \times \mathbf{2} = \mathbf{3}pts$

(S):
$$\begin{cases} x - y + 2z = 5 \\ 3x + 2y + z = 10 \\ 2x - 3y - 2z = -10 \end{cases}$$
, puis en déduire la résolution de(S'):
$$\begin{cases} x^2 - \frac{2}{y-1} + 2\sqrt{z+3} = 5 \\ 3x^2 + \frac{4}{y-1} + \sqrt{z+3} = 10 \\ 2x^2 - \frac{6}{y-1} - 2\sqrt{z+3} = -10 \end{cases}$$

2) Résoudre dans \mathbb{R}^2 le système : $\begin{cases} x^2 + y^2 = 25 \\ \frac{x}{y} + \frac{y}{x} = \frac{25}{12} \end{cases}$ 2pts

PARTIE B: EVALUATION DES COMPETENCES / 4.5 pts

<u>Palier des compétences</u>: résoudre une situation problème, déployer un raisonnement mathématiques et communiquer à l'aide du langage mathématiques en faisant appel à :

- Inéquations de second degré dans \mathbb{R} ;

- Equations de second degré dans ℝ;

- Systèmes d'équations linéaires.

La société dans laquelle **BOUBA** travaille est une société qui fabrique des sousvêtements et des draps. La courbe de production journalière de S sous-vêtements et de D draps de l'usine est donnée par l'inéquation $S^2 + 4S + 8D \le 2$ 496. Pour épargner son argent, **BOUBA** a placé dans une banque pendant deux ans la somme de $40\,000$ FCFA à un taux annuel de x% à intérêts composés (*c'est-à-dire à la fin de chaque année, les intérêts produits s'ajoutent au capital pour former le nouveau capital*). Au bout de 2 ans il retire $47\,500$ FCFA. Les 3 enfants de BOUBA se rendent au marché du village et achètent des fruits de même variété chez le même marchant. Le premier achète 2 ananas, 5 mangues et 4 papayes et paie 720 F, le deuxième achète 3 ananas, 5 mangues et 1 papaye et paie 530 F et le troisième achète 2 ananas, 7 mangues et 8 papayes.

1) Trouver le nombre maximum de sous-vêtements que cette société peut produire en une journée de travail si elle ne produit pas de drap.

1,5pt

2) Déterminer le taux annuel x du placement de BOUBA. 1,5pt

3) Déterminer la somme que va payer le troisième enfant de BOUBA. 1,5pt

EXAMINATEUR: HAMADOU GAGA

Good work!!!

<u>Albert Einstein</u>: « L'enseignement devrait être ainsi : celui qui le reçoit le recueille comme un don inestimable mais jamais comme une contrainte pénible. »