LYCEE BILINGUE DE YAOUNDE											
CLASSE: T ^{le} C ₁	EPREUVE	SESSION	DUREE	COEF							
BACCALAUREAT BLANC	CHIMIE	Avril 2021	3 h	2							

PARTIE A: EVALUATION DES RESSOURCES

Exercice 1 : Vérification des savoirs

1	- Définir couple acide-base, acide of	e-amine, catalyse homogene,	solution tampon.	1 pt
\sim	D 1 4:11:4 / - 49 14:	+		0.5nt

12pts

0.5pt

0,5pt

2- Donner deux utilités d'une solution tampon.

3- Ecrire la formule semi développée de chacun des composés suivants : 1pt

3-1- Acide 2-éthyl-3-méthyl-3-hydroxybutanoïque

3-2- Chlorure de 3-éthyl-2-méthylpentanoyle

3-3 N-propyl-3-éthyl-2-méthylpent-1-amine

3-4- Méthylpropanoate de méthyléthyle

0,5pt 4- Citer deux facteurs cinétiques.

5- Lors du dosage d'un acide faible AH par une base forte, le milieu à l'équivalence est-il acide, neutre ou basique? Justifier la réponse.

6- La molécule CH₃CH(CH₃)CH(NH₂)COOH est-elle chirale? Justifier la réponse. 0,5pt

Exercice 2: Application des savoirs, savoir faire 4 pts

1- Une solution aqueuse S₀ d'acide méthanoïque HCOOH de concentration molaire $C_0 = 0.1 \text{ mol/L}$ a un pH égal à 2,4 à 25°C.

1-1- Calculer les concentrations molaires des espèces chimiques présentes dans S₀. 1,5pt

1-2- L'acide méthanoïque est-il un acide fort ou faible? Pourquoi? 0,5pt

1-3- Ecrire l'équation-bilan de la réaction de l'acide méthanoïque avec l'eau. 0.5pt

1-4- Déterminer le pKa du couple acide méthanoïque/ion méthanoate. 0,5pt

2- On fait réagir le 2-méthylpropan-1-ol avec l'acide benzoïque (C₆H₅COOH), en présence de l'acide sulfurique.

2-1- Ecrire l'équation-bilan de cette réaction chimique.

2-2- Nommer le produit organique formé.

0,25pt

2-3- Donner une méthode permettant d'augmenter le rendement de cette réaction chimique. 0,25pt

Exercice 3: Utilisation des savoirs, savoir faire 4 pts

A l'instant t=0, on mélange dans un erlenmeyer 5 mL d'une solution aqueuse d'iodure de potassium de concentration C₁= 1,0x10⁻¹ mol/L, 8 mL d'une solution d'eau oxygénée de concentration C₂= 0,2 mol/L et un peu d'acide sulfurique. L'équation-bilan de la réaction qui se produit est $H_2O_2 + 2I^2 + 2H_3O^4 \rightarrow 4H_2O + I_2$

La concentration de diiode formé avec le temps est consignée dans le tableau suivant :

t (min)	0	1	2	3	4	5	6	
$[I_2] \times 10^{-2} \text{ mol/L}$	0,00	0,28	0,51	0,70	0,82	0,93	1,00	

1- Représenter graphiquement la variation de la concentration du diiode en fonction du temps

\mathcal{O}^{-1}	1				
Echelle	: 1 cm pour	· 02 x10-2 mol/	'L: 2 cm pour	1 min	1pt

2- Définir la vitesse volumique instantanée de formation du diiode. 0.25pt

Déterminer graphiquement la valeur de cette vitesse à l'instant t=4min 0,5ptComment varie cette vitesse au cours du temps? 0,25pt

3- Montrer qu'à tout instant t donné, $[I]_t = [I]_0 - 2[I_2]_t$ où $[I]_0$ est la concentration des ions iodure à l'instant initial dans le mélange réactionnel. 0,5pt

4- Recopier et compléter le tableau ci-dessus avec une ligne donnant les variations de la

- 5- Définir la vitesse volumique moyenne de disparition des ions iodure entre deux instants t₁ et
- t_2 . Déterminer sa valeur entre les instants $t_1=2$ min et $t_2=5$ min.

0.5p

PARTIE B: EVALUATION DES COMPETENCES 8 pts

Situation-problème : Détermination de la nature et la concentration d'un acide

Lors d'une séance de Travaux Pratiques, le professeur de Chimie met à la disposition d'un groupe d'élèves de la classe de terminale une solution d'un acide X de concentration C_a inconnue et une solution d'hydroxyde de sodium de concentration $C_b=10^{-1}$ mol/L. Pour la détermination de la nature de X et C_a , ces élèves ont procédé à un dosage pH-métrique d'un volume $V_a=10$ mL de la solution de X, mais n'ont pas pu achever le travail. Les résultats qu'ils ont obtenus (à 25° C) sont consignés dans le tableau suivant :

$V_b(mL)$	0	1	2	3	5	6	8	9	9,5	9,8	9,9	10	10,1	11	12	14	16	17
pН	2,6	3,25	3,6	3,85	4,2	4,4	4,8	5,15	5,5	5,9	6,2	8,45	10,7	11,7	12	12,4	12,7	12,8

<u>Tâche 1</u>: En utilisant vos connaissances, aidez ces élèves à trouver la concentration C_a et la nature de X.

Consigne: On fera le schéma annoté du dispositif expérimental et utilisera l'échelle 1 cm pour une unité de pH et 1 cm pour 1 mL

<u>Tâche 2</u>: Aidez ces élèves à faire le choix de l'indicateur acido-basique approprié parmi ceux donnés ci-dessous pour un dosage colorimétrique.

Données: Valeurs de pKa pour quelques couples acides/bases:

 $C_6H_5COOH/C_6H_5COO^-: 4,2$ $CH_3COOH/CH_3COO^-: 4,8$ $C_2H_5NH_3^+/C_2H_5NH_2: 10,7$

Zone de virage de quelques indicateurs colorés:

Hélianthine: 3,1-4,4 Bleu de bromothymol: 6,0-7,6 Phénolphtaléine: 8,2-10,0

«Qui pense peu, se trompe beaucoup» YXJP (200421)