REPUBLIQUE DU CAMEROUN MINESEC / DRLT / DDSM **GROUPE AGIR COMPETENT/ COPOLY**

Tél: 697263845 / 682809067

Année scolaire : 2021-2022

Classe: 1ère D & TI

Durée : 3h Coefficient: 4 Prof: T. N. AWONO MESSI

Samedi, 02 Avril 2022

EPREUVE DE MATHEMATIQUES N°3 DU 2ème TRIMESTRE **PARTIE A: EVALUATION DES RESSOURCES (15 points)**

EXERCICE 1: (5 points)

Le plan est muni d'un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$; unité graphique : 1cm pour 5 unités. Soit f

la fonction définie de \mathbb{R} vers \mathbb{R} par $f(x) = \frac{-x+18}{2x-1}$.

1. Etudie les variations de f et dresse son tableau de variations. 1,5pt

2. Montre que pour tout $x \in D_f$, $f(x) = \frac{17.5}{2x-1} - \frac{1}{2}$.

3. Montre que le point $S\left(\frac{1}{2}; -\frac{1}{2}\right)$ est un centre de symétrie de la courbe $\left(C_f\right)$ de f. 0,5pt

0,5pt

4. Trace la courbe (C_f) dans le repère orthonormé (O, \vec{i}, \vec{j}) . 0,75pt

5. Soit (U_n) la suite définie par : $U_0 = 0$ et $U_{n+1} = f(U_n)$; on pose $V_n = \frac{U_n - 3}{U_n + 3}$ pour tout entier naturel n.

(a) Calcule V_0 et V_1 . 0,5pt

(b) Montre que $\left(V_{n}\right)$ est une suite géométrique dont on précisera la raison. 0,75pt

(c) Exprime V_n puis U_n en fonction de n. 0,5pt

EXERCICE 2: (3 points)

A et B sont deux points distincts du plan tels que AB = 6. Soit I le milieu du segment AB = 6. On désigne par (Γ) l'ensemble des points M du plan tels que $MA^2 + MB^2 = 26$.

1. Montre que pour tout point M du plan, on a : $MA^2 + MB^2 = 2MI^2 + 18$. 0,5pt

2. Détermine la nature et les éléments caractéristiques de l'ensemble (Γ) . 0,75pt

3. Dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , on considère les points A(-2;1), B(-2, -5) et M(x, y).

(a) Détermine les coordonnées du point I. 0,5pt

(b) Montre que (Γ) a pour équation cartésienne $x^2 + y^2 + 4x + 4y + 4 = 0$. 0,75pt

(c) Construis soigneusement (Γ) dans ce repère. 0,5pt

(3 points) **EXERCICE 3:**

Soit l'équation (E): $2\sqrt{2}\cos^2 x + (2-\sqrt{2})\cos x - 1 = 0$ et le polynôme P de variable t tel que $P(t) = 2\sqrt{2}t^2 + (2-\sqrt{2})t - 1$.

1. Calcule $P\left(\frac{1}{2}\right)$ puis tire une conclusion. 0,5pt

2. Vérifie que le polynôme P admet deux racines distinctes. 0,5pt

Prof: AWONO MESSI@2022

- 3. En utilisant la somme ou le produit des racines, détermine l'autre racine.
- 0,5pt
- **4.** Déduis-en dans l'intervalle $[0; 2\pi[$ l'ensemble solution de l'équation (E).

- 1pt
- **5.** Place les points images des solutions de (E) sur le cercle trigonométrique.

0,5pt

EXERCICE 4: (4 points)

- **A) 1.** Résous dans \mathbb{R} l'équation suivante : $\sqrt{4-x} = x-2$.
 - 2. Résous dans \mathbb{R}^3 le système linéaire suivant : $\begin{cases} x+2y+z=8\\ x-y-z=-4\\ x+4y-5z=-6 \end{cases}$ 1pt
 - 3. Une PME fait une étude sur la fabrication des enveloppes en format A4 pour une production comprise entre 50 et 600 enveloppes par jour. Le coût de production, de x enveloppes par jour en milliers de FCFA est donné par $C(x) = 0.001x^2 0.6x + 20$. Chaque enveloppe produite est vendue à 50 FCFA. Le bénéfice réalisé par cette PME, exprimé en FCFA est modélisé par la fonction B définie sur l'intervalle [50;600].
 - (a) Montre que $B(x) = -x^2 + 650x 20000$.

1pt

(b) Détermine le nombre d'enveloppes que doit produire cette **PME** pour réaliser un bénéfice maximal. Précise ce bénéfice maximal.

1pt

PARTIE B : EVALUATION DES COMPETENCES (5 points)

SITUATION:

Le tableau ci-dessous donne la répartition des 100 ouvriers d'une société industrielle de la place en fonction de leur âge :

Âge	[18;22[[22;26]	[26;30[[30;34[[34;38[[38;42[
Nombre d'ouvriers	17	23	x^2	18	12	x

Le chiffre d'affaires de cette société est de 100.000.000 **FCFA** au 1^{er} janvier 2020 et augmente chaque année de 5%.

A l'occasion des fêtes de fin d'année, cette société organise une tombola. Le comité chargé de cette tombola conçoit un jeu qui consiste à tirer successivement et sans remise deux boules d'une urne contenant 7 boules dont 3 boules noires numérotées 0; 4 et 3 puis 4 boules blanches numérotées 0; 2; 7 et 3 indiscernables au toucher. On désigne par a et b les numéros respectifs du premier et du deuxième tirage et on considère la fonction g définie par $g(x) = \frac{8+x^3}{x+2} + ax$ si x < -2 $g(x) = x^2 + \frac{1}{2}x + 3$ si x > -2 et g(-2) = 2a + b. Un joueur **gagne lorsqu'il tire deux boules** portant des réels pours lesquels la fonction numérique g est continue en -2.

Tâches:

1. Détermine l'âge moyen des ouvriers de cette société.

- 1,5pt
- 2. Détermine le nombre de tirages pouvant permettre à un joueur de gagner.
- 1,5pt

3. Détermine le chiffre d'affaires de cette société en 2028.

1,5pt 0,5pt

Présentation :