Excellence Coorporation: E-Corp21: tel 699227652/690423010/693965031 Classe: *PCDTI*.

lieu : Collége Moderne de la Bénoué

Proposé par: M MAKAINI F, PLEG MATHS

■ suites NUMERIQUES: Feuille 11

Exercice 1 FOKaa à vos marques....

- **1.** Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme u_k et de raison q, k un entier naturel.
- a) Soit n un entier naturel; $n \geq k$. Exprimer u_n en fonction de n, k, q et u_k .
- **b)** Exprimer $S_n = u_k + u_{k+1} + ... + u_n$ en fonction de n, u_k et q.
- c) On suppose que la suite (u_n) est définie par pour tout entier naturel n, $u_n = -2(3)^n$. Montrer que (u_n) est une suite géométrique dont on déterminera la raison.
- **2.a)** Le 7^e terme d'une suite géométrique est 8 et le 10^e terme de la suite est 27. Quelle est la raison de cette suite?
 - b) La somme des 4 premiers termes d'une suite géométrique est 45. Quelle est le premier terme de cette suite si la raison est 3?

Exercice 2 Palou c'est toi??

Une suite géométrique (U_n) définie sur \mathbb{N} est telle que $8U_0=27U_3$ et $U_2=\frac{20}{3}$

- **1.** Soit $n \in \mathbb{N}$, rappeler l'expression de U_n en fonction de n, de la raison q et du premier terme U_0 puis déterminer q.
- **2.** Déterminer U_0 et donner l'expression de U_n en fonction de n.
- 3. Exprimer $S_n = U_0 + U_1 + \cdots + U_n$ en fonction de n.

Exercice 3 Je revendique, moi Nakee/mOOELLE

- 1. Dans chacun des cas suivants, démontrer que (U_n) est une suite aritmétique dont on précisera le premier terme et la raison.
 - a) $U_n = 2n 1$; b) $U_n = -5n + 4$; c) $U_n = -\frac{4}{3}n$
- **2.** Dans chacun des cas suivants, démontrer que (U_n) est une suite géométrique dont on précisera le premier terme et la raison. **a)** $U_n = 5^n$; **b)** $U_n = (-1)^n$; **c)** $U_n = \frac{2^n}{3^{n+1}}$

1. Représenter graphiquement les quatre premiers termes de la suite (U_n) .

- 2. Faire une conjecture, sur le sens de variation et la convergence de la suite (U_n)
- **3.** Calculer U_1 , U_2 et U_3 .
- **4.** Soit (V_n) la suite définie par: $V_n = U_n 4$
- a) Démontrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme.
- **b)** Exprimer V_n puis U_n en fonction de n.
- **5.** On pose: $S_n = V_0 + V_1 + V_2 + \cdots V_n$ et $T_n = U_0 + U_1 + U_2 + \cdots U_n$
- a) Calculer S_n et T_n en fonction de n.

Exercice 5 Baamm ChAMMii TolékA/FadILLa

Soit (U_n) la suite définie par: $\begin{cases} U_0 = 6 \\ U_{n+1} = \frac{1}{5}U_n + \frac{4}{5} \end{cases}$

- 1. Représenter graphiquement les quatre premiers termes de la suite (U_n) .
- 2. Faire une conjecture, sur le sens de variation et la convergence de la suite (U_n)
- **3.** Calculer U_1 , U_2 et U_3 .
- **4.** Soit (V_n) la suite définie par: $V_n = U_n 1$
- a) Démontrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme.
- b) Exprimer V_n puis U_n en fonction de n.
- **5.** On pose: $S_n = V_0 + V_1 + V_2 + \cdots V_n$ et $T_n = U_0 + U_1 + U_2 + \cdots U_n$
- a) Calculer S_n et T_n en fonction de n.

Exercice 6 Je VEUX aussii, fAisssaMM/ NaFFiiii

Soit (U_n) la suite définie par: $U_0 = 1$

$$U_{n+1} = -\frac{2}{3}U_n + 5$$

- 1. Représenter graphiquement les quatre premiers termes de la suite (U_n) .
- 2. Faire une conjecture, sur le sens de variation et la convergence de la suite (U_n)
- **3.** Calculer U_1 , U_2 et U_3 .
- **4.** Soit (V_n) la suite définie par: $V_n = U_n 5$
- a) Démontrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme.

Exercice 4 HUm Moi KOI, fALMattaAA/GodW Exprimer V_n puis U_n en fonction de n.

Soit (U_n) la suite définie par: $\begin{cases} U_0 &= 0 \\ U_{n+1} &= \frac{1}{2}U_n + 2 \end{cases}$

- **5.** On pose: $S_n = V_0 + V_1 + V_2 + \cdots V_n$ et $T_n = U_0 + U_1 + U_2 + \cdots U_n$
- a) Calculer S_n et T_n en fonction de n.

Exercice 7 kkikiii SUIs-JE, MahallééEE

On note $D =]-3; +\infty[$; f est la fonction de la variable reelle x definie sur D par : $f(x) = \frac{3x+4}{x+3}$.

- **1.a)** Calculer les limites de f aux bornes de D.
- b) Etudier les variations de f sur D et dresser son tableau de variation.
- **2.a)** Determiner les coordonnees des points de rencontre de la courbe (C) de f avec la droite d'equation cartesienne y=x
 - **b)** Representer graphiquement la courbe (C). Unite sur les axes : 2 cm
 - **3.** (U_n) est la suite definie par : $U_0 = 1$ et $U_{n+1} = \frac{3U_n + 4}{U_n + 3}$ pour tout entier naturel n.
 - a) Calculer U_1 , U_2 et U_3
 - b) Construire sur l'axe des abscisses les cinq premiers termes de la suite (U_n) .

Exercice 8 Cé moN terRRE, NumEHYYYaaa

Monsieur BOUBA désire acheter un vélo qui, au 1^{er} janvier 2014, coûtait $90\,000\,FCFA$. Ne disposant que de $77\,000\,FCFA$ et ne voulant faire aucun emprunt, il décide de placer cette somme de $77\,000\,FCFA$.

Un établissement financier lui propose un placement à intérêt composé annuel de 6%. On désigne par U_n le capital disponible au 1^{er} janvier de l'année (2014 + n).

- 1. Calculer U_1 , U_2 et U_3
- **2.** Démontrer que (U_n) est une suite géométrique dont on précisera la raison.
- **3.** Exprimer U_n en fonction de n.
- 4. A l'aide d'une calculatrice, déterminer à partir de quelle année Monieur BOUBA pourra acheter un vélo.

Exercice 9 yERimma 5POSE

Le loyer mensuel d'une maison est de $50\,000\,F$. Ce loyer augmente de 5% chaque année. On désigne par U_n le montant du loyer après n années.

- 1. Calculer U_1 , U_2 et U_3 .
- 2. Démontrer que (U_n) est une suite géométrique dont on précisera la raison.
- **3.** Exprimer U_n en fonction de n.
- 4. Quel sera le montant du loyer dans 8 ans ?
- **5.** Au bout de combien d'années le loyer aura-t-il doublé ?
- **6.** Calculer le montant total payé pendant les dix premières années.

Exercice 10 EnnoH fILLe oN TE RESpecte

I/ Soit (U_n) les suites $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ respectivement définies par: $\begin{cases} U_0 &= 1\,000\,000\\ U_{n+1} &= 1,08U_n-40\,000 \end{cases}$ et $V_n = U_n - 500\,000$

- 1. Calculer U_1 , U_2 et U_3 .
- **2.a)** Déterminer le nombre réel a tel que pour tout naturel n, on ait $V_{n+1} = aV_n$.
 - b) En déduire que (V_n) est une suite géométrique dont on précisera le premier terme V_0 et la raison q.
 - c) Calculer V_n en fonction de n puis en déduire l'expression de U_n en fonction de n.
- ${\bf II/}$ Le 1 er décembre 1995, Monsieur X avait placé $1\,000\,000\,F$ dans une banque à un taux de 8% par an, à intérêts composés. Parallèlement, Monsieur X retire une somme de 40 000 le 1 er décembre de chaque année pour préparer ses fêtes.

Quelle somme aura Monsieur X dans sa banque le $1^{\rm er}$ décembre 2001 ?

Exercice 11 Terrelll BOUmmmm

Sur une fiche de classification des arbres d'un jardin botanique, on a pu obtenir des informations sur la croissance de deux arbres. En l'an 2003 la taille en mètres d'un arbre X est notée U_0 et celle d'un arbre Y est notée V_0 .

On suppose que $U_0 = V_0 = 4$.

Chaque année, la taille de l'arbre X augmente de 3m tandis que celle de l'arbre Y augmente de 30%. On note U_n la taille de l'arbre X pour l'année (2003 + n) et V_n celle de l'arbre Y pour la même année.

- 1. Calculer U_1 , U_2 , V_1 et V_2 .
- **2.** Exprimer U_{n+1} en fonction de U_n , puis V_{n+1} en fonction de V_n .
- **3.** En déduire la nature des suites (U_n) et (V_n) .
- **4.** Exprimer U_n et V_n en fonction de n.
- 5. En déduire la taille de l'arbre X et celle de l'arbre Y en l'an 2016.
- **6.** Etudier la convergence des suites (U_n) et (V_n) .
- 7. Le résultat précédent est-il en accord avec la réalité

Exercice 12: Début statistique

Pendant les deux premiers mois de la pandémie de la COVID-19, un pays a dressé le tableau statistique cidessous, des médecins infectés selon leur tranche d'âge (en année):

âge	[20;30[[30;35[[35;45[[45;55[[55;65[
effectif	16	48	60	16	12

- 1) Déterminer l'âge moyen des médecins infectés.
- 2) Construire le polygone des effectifs cumulés décroissants.
- Déterminer par calcul, l'âge médian des individus touchés par le virus.
- 4) Un groupe de 3 personnes a été choisi au hasard parmi les médecins de moins de 45 ans, dont 52 femmes, pour un traitement expérimental. Déterminer le nombre de groupes comportant au plus une femme.