PREPARATION AU PROBATOIRE A N°1

Thèmes abordés

Partie A	Partie B	Partie C
Systèmes.	Dénombrement.	Etude de fonctions.
Equations du second degré.		

Partie A

1.a) Résoudre dans
$$\mathbb{R}^2$$
 le système :
$$\begin{cases} 3a - b = 3 \\ -a + 2b = 4 \end{cases}$$

b) En déduire les solutions dans
$$\mathbb{R}^2$$
 du système :
$$\begin{cases} \frac{3}{x} - \frac{1}{y} = 3\\ \frac{-1}{x} + \frac{2}{y} = 4 \end{cases}$$

2. a) Résoudre dans \mathbb{R} l'équation : $X^2 - 10^2 = 0$.

b) En déduire les solutions dans \mathbb{R} de l'équation $(x^2 + 1)^2 - 10^2 = 0$.

Partie B

Dans une entreprise, 70% des salariés sont des hommes, 10% des femmes sont cadres et 20% des hommes sont cadres.

1) Quel est le pourcentage des cadres dans cette entreprise?

2) Recopier et compléter le tableau ci-dessous résumant la situation, en pourcentages de salariés de l'entreprise.

	Cadres	Autres	Total
Hommes		0	70%
Femmes			
Total			100%

3) L'entreprise compte 34 cadres. Quel est le nombre total de salariés ?

4) Faire un tableau, comme ci-dessus, résumant la situation en nombres de salariés de l'entreprise.

Partie C

Soit f la fonction définie sur D = $[-5, -1[\cup]-1, 3]$ par $f(x) = 1 - \frac{1}{x+1}$. On note (C_f) sa courbe dans le plan rapporté au repère orthonormé (O, \vec{i}, \vec{j}) .

1. a) Calculer les limites de f à gauche et à droite de -1.

b) En déduire une asymptote à la courbe (C_t) .

2. a) Calculer f'(x) pour tout x de D.

b) Dresser le tableau de variation de f.

3. Montrer que le point A(1, -1) est un centre de symétrie pour la courbe (C_f) .

4. Tracer la courbe (C_t).

5. Tracer sur le même graphique la courbe (C_g) représentative de la fonction g définie sur D par g(x) = |f(x)|.