

LOGARITHME NEPERIEN

Exercice 1. Déterminer l'ensemble de définition de *la fonction f dans les cas suivants :*

- **1** $\ln(x-3)$
- $\bullet \ln\left(\frac{x+1}{x-2}\right)$
- **3** $\ln(x+3)$
- **4** $\ln(2-5x)$
- **6** $\ln(x-2) + \ln(x)$ **0** $\frac{x}{3-\ln x}$
- **6** $\ln((x+1)(x-3))$

- $\mathbf{O} \ln \left(\frac{x-4}{2+r} \right)$
- **8** $\ln(x^2 x)$
- ① $\ln(x^2 5x + 6)$

Exercice 2. Résoudre dans \mathbb{R} les équations et inéquations suivantes :

- **1** $\ln(x+6) = \ln(3)$
- $2 \ln(x+2) \ln(3-x) = 0.$
- **3** $\ln(x+2) = \ln(1-x)$
- $\bullet \ln(x^2+1) = \ln(2x)$
- **6** $\ln(x) > \ln 1$
- \bullet $\ln(2x) > \ln\left(\frac{1}{x+2}\right)$
- $\ln(x^2-4) < \ln 5$

Exercice 3. *Simplifier les nombres suivants :*

- **1** $\ln(\sqrt{2-\sqrt{2}}) + \ln(\sqrt{2+\sqrt{2}})$
- 2 $\ln(\sqrt{\sqrt{2}-1})^{2023} + \ln(\sqrt{\sqrt{2}+1})^{2023}$
- **3** $\ln(12) (\ln(2) \ln(3)).$
- $2\ln(\frac{7}{2}) + 2\ln(35) 2\ln(5) \ln(\frac{1}{9}).$
- **6** $\ln(\frac{1}{5}) + \ln(\ln(\frac{5}{6}) + \ln(6)).$
- **6** $\ln(\frac{27}{16}) \ln(4) \frac{4}{2} \ln 3$.

Exercice 4. Exprimer en fonction de $\ln 2$ et $\ln 3$ les réels suivants :

- **1** $x = \ln(45)$
- **3** $z = \ln(75)$
- **2** $y = \ln(\frac{\sqrt{45}}{2})$ **4** $h = \ln(\frac{\sqrt{15}}{2})$

1 Sans utiliser une calculatrice, Exercice 5. comparer les réels a et b.

$$a = \ln(13) - \ln(4)$$
 et $b = \ln(7) - \ln(2)$.

2x, y et z sont trois réels strictement positifs tels que : $\ln(x) = -\frac{2}{3}\ln(y)$ et $\ln(z) = -3$.

$$A = \ln\left(\frac{x^3y^2}{16z^4}\right) \quad B = 2\ln\left(\frac{8z^2}{x^6y^4}\right).$$

Exercice 6. Calculer les limites suivantes :

- **6** $\lim_{x \to +\infty} \frac{5 \ln x + 1}{2 \ln x + 3}$. **0** $\lim_{x \to 0^+} x(\ln x)^2$. **6** $\lim_{x \to +\infty} \ln \left(\frac{2x 7}{x + 1} \right)$. **1** $\lim_{x \to 0^+} \frac{\ln(1 + 8x)}{x}$.
- $\begin{array}{c|c} \mathbf{0} & \lim_{x \to +\infty} (x \ln(x)) \\ \mathbf{2} & \lim_{x \to +\infty} x \ln(1 + \frac{1}{x}). \\ & r \end{array} \qquad \begin{array}{c|c} \mathbf{0} & \lim_{x \to 0^+} \frac{1}{x^2} + \ln x. \\ \\ \mathbf{0} & \lim_{x \to +\infty} \frac{\ln(2x^2 + x + 1)}{x}. \end{array}$
 - $\mathbf{9} \lim_{x \to 0} \frac{\ln(1+x^2)}{x}.$

Exercice 7. Justifier pour chaque cas que la fonction f est dérivable sur l'intervalle I puis calculer sa fonction dérivée f'.

- **1** $f(x) = \ln(\frac{x^3}{5}); \quad I =]0; +\infty[$
- **2** $f(x) = \ln\left(\frac{3-x}{x+1}\right); \quad I =]-1;3[.$
- **3** $f(x) = \ln(|x^2 2x|); \quad I =]0; +\infty[$

Exercice 8. Déterminer les primitives de la fonction f sur l'intervalle I pour chacune des fonctions suivantes:

- **1** $f(x) = \frac{1}{x}$; $I =]-\infty; 0[$.
- **2** $f(x) = \frac{x}{1 x^2}$; $I =]1; +\infty[$.
- **3** $f(x) = \frac{1}{x \ln x}$; I =]0; 1[.

$$f(x) = \frac{x+1}{x+3}; \quad I =]-\infty; -4[.$$

Exercice 9. Déterminer les primitives de la fonction f sur l'intervalle I pour chacune des fonctions suivantes:

1
$$f(x) = \frac{1}{x}; \quad I =]-\infty; 0[.$$

2
$$f(x) = \frac{x}{1 - x^2}; \quad I =]1; +\infty[.$$

8
$$f(x) = \frac{1}{x \ln x}$$
; $I =]0; 1[$.

4
$$f(x) = \frac{x+1}{x+3}$$
; $I =]-\infty; -4[$.

Exercice 10. Calculer

- \bullet log(0.01) + log(10000).
- $\log_3(\frac{1}{27}) + \log_2(64).$
- $\bullet \log_2(8^{-3}) + \log_5(125^{-3}).$
- **6** $\log_{\frac{1}{3}}(\sqrt{3}5)$.
- **6** $\log_4(0.002) + \log_5(30)$.
- $\log_9(\sqrt{3}) + \log_{\frac{1}{6}}(27).$

Exercice 11. Résoudre dans \mathbb{R} les équations et les inéquations suivantes :

- $\log_3(2x-1) \log_3(x) = 1$
- $\log(x) + 1 = \log(x+3)$.
- **3** $\log(3x+2) < \log(x+3)$.
- $\bullet \ \log_{\frac{1}{2}}(2x+1) \ge \log_{\frac{1}{2}}(x+4).$

Exercice 12. On considère la fonction f définie sur $]0; +\infty[$ par $f(x) = 1 + \frac{\ln x}{x}$. Soit C la courbe représentative de f dans le plan rapporté à un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$. Unité graphique 5cm.

- **1** Calculer les limites de f en 0 et en $+\infty$. Déterminer les asymptotes de C.
- **2** *Dresser le tableau des variations de f.*
 - **a)** Montrer que l'équation f(x) = 0 admet sur l'intervalle $\left[\frac{1}{e};1\right]$ une unique solution notée α .

- **b)** Déterminer un encadrement de α à 10^{-1} .
- c) Donner suivant les valeurs de x, le signe de f(x) sur $]0; +\infty[$.
- **3** *Tracer la courbe C.*

1 Etudier le signe de $\ln x$. Exercice 13.

2 Déterminer $\lim_{x \to +\infty} \frac{\ln x}{x}$ et $\lim_{x \to 0^+} \frac{\ln x}{x}$.

On définit sur $]0; +\infty[f(x) = \frac{1 + \ln x}{x}]$. On $note \ C \ sa \ courbe \ représentative \ dans \ \overset{_}{un} \ rep\`ere$ orthogonal $(O; \overrightarrow{i}, \overrightarrow{j})$.

- **3** Déterminer la limite de f à droite en 0. Interpréter graphiquement le résultat.
- **4** Déterminer la limite de f en $+\infty$. Interpréter graphiquement le résultat.
- **6** a) Etudier la dérivabilité de f et calculer f'(x).
 - **b)** Dresser le tableau de variation de f.
- **6** a) Montrer que l'équation f(x) = 0 une solution α unique sur $]0; +\infty[$.
 - **b)** Donner un encadrement de α à 10^{-1} près.
- **7** Tracer C dans le repère $(O; \overrightarrow{i}, \overrightarrow{j})$.