Année scolaire 2021/2022

Évaluation N°3 Classe: Tle D Durée: 4h; Coef: 04

ÉPREUVE DE MATHÉMATIQUES PARTIE A: ÉVALUATION DES RESSOURCES: 15 points

Exercice 1:5pts

- 1) Démontrer par récurrence que $\forall n \in \mathbb{N}^*$ on a : $1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$. 0,5pt
- 2) Déterminer l'entier *n* tel que : $1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = 100$. 0,5pt
- 3) En utilisant la première question, déduire le calcul de la somme $T = 9^3 + 10^3 + 11^3 + 12^3 + \dots + 17^3$. 0,5pt
- 4) La fonction h est définie sur I = [1; 2] par $h(x) = \frac{3x+2}{x+2}$.
 - a) Montrer que h réalise une bijection de I vers un intervalle I à préciser. 0,5pt
 - b) Montrer que $\forall x \in I$, $|h'(x)| \leq \frac{4}{9}$. 0,5pt
- 5) La suite (U_n) est définie par : $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{3U_n + 2}{U_n + 2} \end{cases} \forall n \in \mathbb{N}.$

1) Déterminer les coordonnées du point moyen G.

- a) Montrer par récurrence que $\forall n \in \mathbb{N}$, $1 \le U_n \le 2$. 0,5pt
- b) Montrer que $\forall n \in \mathbb{N}$, $U_{n+1} \geq U_n$. 0,5pt
- c) Quel conjecture pouvez-vous faire sur la convergence de la suite (U_n) ? 0,25pt
- d) Démontrer que $\forall n \in \mathbb{N}, |U_{n+1}-2| \leq \frac{4}{9} |U_n-2|$. 0,5pt
- e) En déduire que $|U_n 2| \le (\frac{4}{9})^n$. 0,5pt
- f) Déterminer la limite de la suite (U_n) . 0,25pt

EXERCICE 2: 3,25pts

- I. On considère le polynôme P de degré 3 défini par : $P(z) = z^3 (2+2i)z^2 + 2(1+2i)z 4i$.
 - 1. Montrer que P(2i) = 0. 0,5pt
 - 2. a- Déterminer les nombres complexes a et b tels que : $P(z) = (z 2i)(z^2 + az + b)$. 0,5pt b- Résoudre l'équation dans \mathbb{C} l'équation P(z) = 0. 0,5pt
- II. Dans le plan complexe (0, I, J) direct, on donne les points : $Z_A = 3$, $Z_B = 2 + i\sqrt{3}$, $Z_C = -1$, $Z_E = 7$ et $Z_G = 11 + 4i\sqrt{3}$.
 - 1. On pose : $X = \frac{Z_B Z_I}{Z_A Z_I}$. Calculer |X| et déterminer un argument de X . 0,5pt
 - 2. En déduire la nature exacte du triangle A I B.
 - 3. On pose : $\varphi = \frac{Z_G Z_C}{Z_R Z_C}$. Mettez φ sous forme algébrique puis donner une interprétation géométrique du résultat obtenu. 0,5pt
 - 4. Déterminer l'affixe du point F de l'axe des abscisses pour lequel le triangle EFG est équilatéral.

EXERCICE 3: 2,25pts

Sur huit exploitations agricoles d'une même région ,on a mesuré la taille de l'exploitation en hectare (ha) et le bénéfice annuel en Francs. Les résultats sont regroupés dans le tableau ci-dessous.

Taille X	1	2	4	1	3	4	3	2
Bénéfice Y	2	5	7	-1	8	9	7	3

- 2) Calculer le coefficient de corrélation linéaire . 0,5pt
- 3) Un ajustement linéaire est-il approprié ? justifier votre réponse. 0,5pt
- 4) Déterminer une équation de la droite de régression de y en x. 0,5pt
- 5) Quel serait le bénéfice d'une exploitation de 2,5ha? 0,25pt

0,25pt

0,5pt

0.5pt

EXERCICE 4 : 4,75pts

Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{x^3-4}{x^2+1}$ et (\mathcal{C}_f) sa courbe représentative dans un repère orthonormal (O,I,I).

I –On donne $g(x) = x^3 + 3x + 8$.

a) Etudier les variations de g puis dresser son tableau de variation .	0,5pt	
b) Montrer que l'équation $g(x) = 0$ admet dans \mathbb{R} une solution unique β .	0,5pt	
c) Calculer $g(-2)et g(-1)$.	0,25pt	
d) Donner un encadrement de β d'amplitude 10^{-1} par la méthode de votre choix.	0,5pt	
e) Préciser le signe de $g(x)$ suivants les valeurs de x .		

II - a) Écrire f'(x) en fonction de g(x).

0,5pt

0,5pt

0,5pt

- b) Étudier les variations de f, puis Dresser son tableau de variation ·
- c) En étudiant les branches infinies, montrer que (\mathcal{C}_f) admet en $+\infty$ une asymptote oblique que (Δ) dont on précisera une équation cartésienne .
- d) Etudier la position relative de (\mathcal{C}_f) par rapport (Δ) .
- e) Vérifier que (C_f) rencontre (Δ) en un point M dont on précisera les coordonnées · 0,25pt
- **f)** Montrer clairement que $f(\beta) = \frac{3}{2}\beta$.

0,5pt

g) Représenter soigneusement (C_f) et (Δ) .

0,5pt

B. Évaluation des compétences / 4,5pts

Monsieur POUGA est un agriculteur qui possède une plantation de cacao. Il a relevé que sa production (en Kg), après chaque saison de récolte depuis 2014 (année de rang 1), forme une série statistique à deux variables comme l'indique le tableau ci-contre :

Rang de l'année x _i	1	2	3	4	5	6	7
Production y_i (en Kg)	94	219	751	2252	4573	6714	8157

Il voudrait avoir une estimation de sa production en 2021 en supposant que la tendance des récoltes reste la même au cours du temps. Pour cela il fait appel à son fils de la classe de terminale afin de l'aider. Dans sa démarche, son fils constate que le nuage de points associé à cette série ne laisse pas entrevoir un ajustement linéaire et après plusieurs calculs, il décide donc de poser $y_i' = \sqrt{y_i}$ et constate que le nuage de points de la nouvelle série (x_i ; y_i') laisse entrevoir un ajustement linéaire.

Pour le suivi des recettes de sa ferme, monsieur POUGA ai fait appel à l'expertise d'un bureau d'études. Des études faites ont permis d'établir que la recette R(x) (en millions de francs de CFA), résultant de la vente de x centaines de kilogrammes de cacao, est définie sur [1; 5] par R(x) = 17x. Monsieur POUGA vend son cacao à son client principal, au cout $C(x) = x(-x^2 + 29) - 16$ (en millions). Le bénéfice de son client principal pour x centaines de kilogrammes de cacao vendus est B(x) = R(x) - C(x) défini sur [1; 5]. Le fournisseur requiert votre expertise pour savoir s'il existe au moins un x_0 dans [1; 5] tel que le bénéfice soit égale à 81 millions de francs CFA.

Votre travail consiste à résoudre les tâches suivantes en justifiant votre démarche par des calculs bien détaillés :

Tâche 1 : Déterminer lorsque des x_0 existent, leur(s) encadrement(s) à 10^{-1} près.	1.5 pt
Tâche 2 : Déterminer, à l'unité près, une estimation de sa production en 2021.	1.5 pt
Tâche 3 : Déterminer, à l'unité près, le nombre de litres de gel à produire donnant un	
bénéfice est positif.	1.5 pt

Présentation 0,5pt