LYCEE DE MADINGRING	$1^{\grave{\mathrm{e}}re}$ EVALUATION DU	$CLASSE: 2^{nde}C$
	PREMIER TRIMESTRE	
ANNEE: 2021/2022	EPREUVE DE :	DUREE : 3 HEURES
Jeudi, 21 janvier 2021	MATHEMATIQUES	COEF: 05

PARTIE A: EVALUATIONS DES RESSOURCES

[15,5pts]

EXERCICE 1:04pts

- 1. Comparer les nombres $\sqrt{13} + \sqrt{8}$ et $\sqrt{14} + \sqrt{7}$. [1pt]
- 2. a. Développer et réduire $(2+\sqrt{5})^2$ et $(2-\sqrt{5})^2$. |1pt|
 - b. Montrer que $x = \sqrt{9 + 4\sqrt{5}} \sqrt{9 4\sqrt{5}}$ est un entier naturel. [0,5pt]
- 3. Calculer le réel $A = \left(1 + \frac{1}{4}\right) \times \left(1 + \frac{1}{5}\right) \times \left(1 + \frac{1}{6}\right) \times \dots \times \left(1 + \frac{1}{999}\right)$. [1pt]
- 4. En utilisant les propriétés de puissance, simplifier l'expression suivante : $B = \frac{16(10)^2 \times 9^4 \times 14^2}{4^2 \times 5^6 \times 3^8 \times (7^2)^{-1}}$. [0,5pt]

EXERCICE 2:03,5pts

- 1. Montrer que $\sqrt{3}$ est un nombre irrationnel. [0,5pt]
- 2. Soit ABC un triangle quelconque.
 - a. Construire les points B' et C' tels que : $\overrightarrow{AB'} = -\frac{2}{3}\overrightarrow{AB}$ et $\overrightarrow{AC'} = -\frac{2}{3}\overrightarrow{AC}$. [0,5pt]
 - b. Démontrer que les droites (BC) et (B'C') sont parallèles. [0,5pt]
 - c. On désigne par I et J les milieux respectifs des segments [BC] et [B'C'].
- Démontrer que les points A, I et J sont alignés. Demontrer que les points A, I et J sont alignes. 3. On considère \mathbb{R}^2 muni de sa base canonique $(\overrightarrow{i}, \overrightarrow{j})$. Soient les vecteurs $\overrightarrow{u} = 2\overrightarrow{i} - 3\overrightarrow{j}$ et $\overrightarrow{v} = -\overrightarrow{i} + 2\overrightarrow{j}$.
 - a. Montrer que $(\overrightarrow{u}, \overrightarrow{v})$ forme base du plan.
 - b. Déterminer les coordonnées des vecteurs \overrightarrow{i} et \overrightarrow{j} dans la base $(\overrightarrow{u}, \overrightarrow{v})$ [0.75pt]

EXERCICE 3: 04pts

1. Calculer le nombre suivant en laissant entrevoir votre démarche :

$$y = \sqrt{73 + \sqrt{57 + \sqrt{43 + \sqrt{31 + \sqrt{21 + \sqrt{14 + \sqrt{1 + \sqrt{9}}}}}}}.$$
 [1pt]

- 2. Ranger dans l'ordre croissant les nombres suivants tout en détaillant la méthode : $\frac{3}{7}$; $\frac{5}{4}$; $\frac{8}{11}$ et $\frac{10}{3}$.[1pt]
- 3. Soient a, b, c et d quatre nombres réels strictement positifs.

a. Démontrer que si
$$\frac{a}{b} = \frac{c}{d}$$
, alors $\frac{a^2 - c^2}{a^2 + 2c^2} = \frac{b^2 - d^2}{b^2 + 2d^2}$. [1pt]

b. Démontrer que si
$$\frac{a}{b} > \frac{c}{d}$$
, alors $\frac{c}{d} < \frac{a+c}{b+d}$. [1pt]

EXERCICE 4:05pts

Parmi les propositions suivantes, une seule est exacte pour chacune des questions. Précise là uniquement par sa lettre.

1. La valeur de
$$|3 - \pi^2|$$
 est :
 $a) -3 + \pi^2$, $b) 3 - \pi^2$, $c) 3 + \pi^2$, $d) -3 - \pi^2$. [1pt]

2. Soient x et y deux réels tels que : -10 < x < 11 et -2, 25 < y < -2, 23. Un encadrement de $\frac{x}{y}$ est :

$$\text{a.} \quad \frac{-10}{2,23} < \frac{x}{y} < \frac{11}{2,25} \; , \quad b) \quad \frac{-11}{2,25} < \frac{x}{y} < \frac{-10}{2,23} \; , \quad c) \quad \frac{-10}{2,23} < \frac{x}{y} < \frac{-11}{2,25} \; , \quad d) \quad \frac{-11}{2,25} < \frac{x}{y} < \frac{10}{2,23} . \quad \textbf{[1pt]}$$

3. La forme factorisée de $x^3 - 27$ est :

a)
$$(x-3)(x^2-3x+9)$$
; b) $(x-3)(x^2+3x-9)$; c) $(x-3)(x^2+3x+9)$; d) $(x-3)(x^2-3x-9)$ [1pt]

4. Une expression plus simple de la somme $\overrightarrow{BC} - \overrightarrow{BA} + 2\overrightarrow{CD} - \overrightarrow{AD}$ est :

- b) \overrightarrow{CD} , c) \overrightarrow{BD} , d) aucune réponse.

[1pt]

5. Un quadrilatère ABCD est un parallélogramme si et seulement si :

a)
$$\overrightarrow{AD} = \overrightarrow{CB}$$
,

b)
$$\overrightarrow{AB} = \overrightarrow{DC}$$

a)
$$\overrightarrow{AD} = \overrightarrow{CB}$$
, b) $\overrightarrow{AB} = \overrightarrow{DC}$, c) $\overrightarrow{AB} = \overrightarrow{CD}$, d) $\overrightarrow{AC} = \overrightarrow{DB}$.

$$d) \ \overrightarrow{AC} = \overrightarrow{DB}.$$

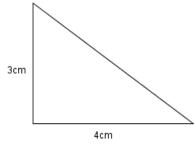
[0,5pt]

6. Le point I est le milieu du segment [EF] si et seulement si :

$$a) \ \overrightarrow{EI} + \overrightarrow{IF} = \overrightarrow{EF} \ , \qquad b) \ \overrightarrow{EI} = \overrightarrow{FI} \ , \qquad c) \ \overrightarrow{EI} + \overrightarrow{IF} = \overrightarrow{0} \ , \qquad d) \ \overrightarrow{IE} + \overrightarrow{IF} = \overrightarrow{0} \ .$$

b)
$$\overrightarrow{EI} = \overrightarrow{FI}$$

c)
$$\overrightarrow{EI} + \overrightarrow{IF} = \overrightarrow{0}$$


$$d)$$
 $\overrightarrow{IE} + \overrightarrow{IF} = \overrightarrow{0}$.

[0,5pt]

PARTIE B: EVALUATIONS DES COMPETENCES

[04,5pts]

Votre oncle HAMINOU veut aménager une partie de son jardin qui a la forme du triangle rectangle ci-contre. Il connait uniquement la base de 4m et la hauteur de 3m et désire l'entourer d'un grillage. Son voisin YAYA commerçant mesure les contours à son insu et lui vend du grillage pour protéger son jardin à 120000 FCFA sans toute fois lui préciser le prix d'un mètre de grillage. Par la suite, HAMINOU recommande à un technicien de planter des roses sur $\frac{2}{3}$ de la surface de son jardin, des gazons sur les $\frac{1}{7}$ du reste de cette surface. Le m^2 de gazon est vendu à $800\ FCFA$ et la quantité de roses nécessaire pour $1 m^2$ est vendue à 500 FCFA.

$\hat{T}\hat{a}$ ches:

1. Déterminer le prix d'un mètre du grillage

2. Déterminer le prix des gazons nécessaires.

3. Déterminer le prix des roses.

[1,5pt]

[1,5pt]|1,5pt|

EXAMINATEUR: M. KALDAOUSSA MATTHIEU (PLEG-MATHS)