EPREUVE DE MATHEMATIQUES				
Devoir : N°1	Année 20 <mark>212022</mark>	Coefficient : 4	Classe : 3 ième	Durée : 2heures
	·	·	•	

NB: L'épreuve comporte trois parties indépendantes. La présentation de votre travail sera notée sur 1 pt.

A/ ACTIVITES NUMERIQUES: 5 points

EXERCICE 1: 3 points

On donne les nombres réels suivants : $A = 2 + \frac{2}{3} \times \left(\frac{5}{2} + \frac{1}{6}\right)$; $B = \frac{120}{900}$.

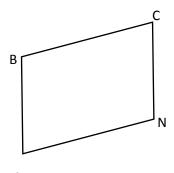
- 1- Calcule A en donnant le résultat sous la forme de fraction irréductible ; (0.75pt)
- 2- En utilisant l'algorithme d'Euclide, calcule PGCD(900; 120); (0.75pt)
- 3- En déduis le PPCM (900; 120); (0.75pt)
- 4- Ecris la fraction *B* sous la forme irréductible. (0.75pt)

EXERCICE 2: 2 points

Le sol d'une cuisine a la forme rectangulaire de longueur $6,93\ m$ et de largeur $5,46\ m$. On veut carreler cette pièce avec un nombre entier de dalles carrées, sans découpe, en commençant la pose par un coin de la pièce comme la montre la figure ci-contre :

Quelle est la plus grande longueur du côté (en $\it cm$) possible des dalles carrées à utiliser pour ce travail ?

B/ ACTIVITES GEOMETRIQUES: 5 points


EXERCICE 3: 3 points

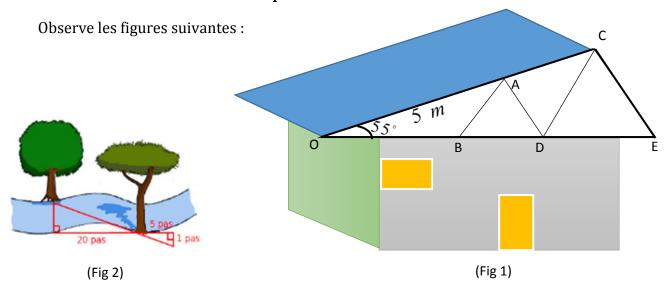
La figure BANC est un parallélogramme tel que : BC = 6 cm;

 $BA = 4 \ cm$; $AC = 8 \ cm$. Le point P appartient au segment [AC] tel que :

 $AP = 2,4 \ cm$; La droite passant par P et parallèle à (BC) coupe (NC) au point O.

- 1- Construis en vraie grandeur cette figure;
- 2- Justifier que les droites (PO) et (AN) sont parallèles; (1pt)
- 3- Calcule les longueurs des segments [CO] et [PO]. (1pt)

EXERCICE 4:2 points


L'unité de longueur est le Cm, la figure ci contre n'est pas en vraie grandeur. On donne HJ=13 ,HI=5 JL=26 , IK=10 ,KE=20; EL=10 (IE)//(HL)

- a) Montrer que (IJ)//(KL)
- b) calculer IE

(1pt)

C- EVALUATION DES COMPETENCES: 9 points

M BONSOP chef du quartier BAMBAKA a confié la charpente de la case d'une de ses femmes au technicien ZAMBO en lui suggérant les conditions suivantes : mes $EOC = 55^{\circ}$; $OE = 10,24 \, m$; $OA = 5 \, m$; $AC = 3 \, m$; les points B et D doivent être tels que : (AB)//(DC) et (AD)//(CE). A la fin des travaux, cette case se présente comme le montre la figure (Fig 1) dont le technicien précise que : $OB = 4 \, m$; $BD = 2,4 \, m$ et $DE = 3,84 \, m$. M BONSOP content, déclare que ZAMBO a respecté le contrat et décide de faire une fête de fin des travaux en achetant **84** canettes de jus ; **147** gâteaux au lait et souhaite les partager avec le maximum de ses amis en utilisant toutes les canettes de Jus et les gâteaux de sorte que chacun de ses amis reçoive un paquet contenant le même nombre de canettes de Jus et le même nombre de gâteaux au lait.

En allant faire ses achats, M BONSOP traverse une rivière à pas constant en les comptants. Il utilise deux arbres pour décrire sa marche comme le montre la figure (Fig 2). M BONSOP estime la longueur de son pas à $65\ cm$.

- 1- M ZAMBO a-t-il réellement respecté le contrat de M BONSOP? (3pts)
- 2- Quelle est la contenance du paquet d'un ami de M BONSOP? (3pts)
- 3- Quelle est la largeur de cette rivière ? Donne le résultat au centième près. (3pts)

Présentation : 1 pt