LYCÉE BILINGUE D'ÉMANA							
Examen :	Evaluation 1	Série :	С	Session :	Octobre 2021		
Épreuve :	Physique	Durée :	03 heures	Coefficient	C : 04		

PARTIE I: ÉVALUATION DES RESSOURCES / 24 points

Exercice 1 : Vérification des savoirs / 8 points

1.1. Définir : incertitude de mesure, force conservative

2pt

1.2. Enoncer : la loi d'Ohm, le théorème de l'énergie cinétique

- 2pt
- 1.3. Donner les unités des grandeurs physiques suivantes : le moment d'inertie, la vitesse angulaire **2pt**
- 1.4. Citer et expliquer en quoi consistent les étapes de la démarche scientifique.
- 2pt

1.5. Décrire l'expérience permettant de vérifier la loi d'Ohm.

2pt

Exercice 2: Application des savoirs / 8 points

(Les parties 1,2 et 3 sont indépendantes.)

1. Evaluation d'une incertitude de type A / 3 pt

La mesure d'une résistance a été effectuée par 10 binômes. Les valeurs obtenues sont indiquées dans le tableau suivant :

Essai n°	1	2	3	4	5	6	7	8	9	10
R en $k\Omega$	10,53	10,49	11,00	10,04	10,14	10,29	10,70	10,87	10,44	10,68

1. Calculer la résistance moyenne et l'écart-type expérimental

1,5pt

2. Calculer l'incertitude type ainsi que l'incertitude élargie pour un seuil de 99%

1pt

3. Donner un intervalle de confiance pour un seuil de 99%

0,5pt

2. Calcul de l'Energie cinétique d'un solide en translation rectiligne / 2 pt

Quelle est l'Energie Cinétique possède un véhicule de 2 tonnes roulant à $36 \, km.h^{-1}$?

2pt

3. Energie cinétique totale / 3pt

Une boule sphérique de rayon $R=10\,cm$, de masse $m=2\,kg$ et de moment d'inertie $J_{\Delta}=0.8\times 10^{-2}\,uSI$, roule sans glisser sur une table horizontale. Son centre d'inertie est animé d'un mouvement de translation de vitesse $V_G=4.5\,m.s^{-1}$. Calculer :

1. Son Energie cinétique de translation

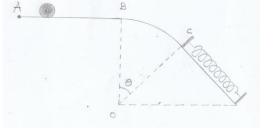
1pt

2. Son Energie cinétique de rotation autour de son centre d'inertie

1pt

3. Son Energie Cinétique Totale

1pt


EXERCICE 3: Utilisation des savoirs / 8 points

1 Théorème de l'énergie cinétique et travail d'un ressort / 4 points

Une petite bille de masse m = 300g glisse sans roulement sur le trajet ABC (voir figure). Il existe des

forces de frottement d'intensité constante f=0,03N durant tout le parcours de la bille. Le trajet BC est un arc de cercle de centre O et de rayon R=2,0m

1. Quelle est la vitesse de la bille lors de son passage en A sachant qu'elle s'arrête en B ? 1pt

- 2. L'équilibre de la bille est instable, celle-ci glisse alors vers le point C. Déterminer la vitesse $V_{\rm C}$ de la bille dans cette nouvelle position. **1pt**
- 3. Au point C est placé l'extrémité d'un ressort de constante de raideur k=500N/m. La bille bute en C sur le ressort avec la vitesse $V_C=3,4\,m/s\,$ qu'il comprime. Soit x la compression maximale du ressort (x est positif)

3.1. Par application du Théorème de l'Energie Cinétique, montrer la relation :

$$kx^2 + 2x(f - mg\sin\theta) - mV_C^2 = 0$$
 1,5pt

3.2. Calculer la compression maximale x du ressort.

0,5pt

On donne
$$AB = L = 500m$$
; $\theta = 45^{\circ}$; $g = 10 N / kg$

2 Notion de choc élastique / 4 points

Deux billes B_1 et B_2 , animés d'un mouvement rectiligne et roulant sans frottement, entrent en collision avec des vitesses respectives \vec{v}_1 et \vec{v}_2 . Le choc est parfaitement élastique.

1. Quand est-ce un choc est dit mou d'une part et élastique d'autre part ?

1pt

- 2. Donner l'expression des valeurs des vitesses $\vec{v_1}'$ et $\vec{v_2}'$ des billes juste après le choc, sachant que les billes ne sont pas déviées dans leur trajectoire.
- 3. Calculer les valeurs numériques de ces vitesses.

1pt

On donne :
$$v_1 = 20 \, m.s^{-1}$$
 ; $m_1 = 100 \, g$; $v_2 = -10 \, m.s^{-1} \, m_2 = 200 \, g$

PARTIE II: ÉVALUATION DES COMPÉTENCES /16 points

Situation problème

Pour remonter les sacs de ciment, un ingénieur propose deux possibilités à une entreprise.

Possibilité 1:

Un « remonte pente » motorisé pour tirer à vitesse constante les sacs de ciment de masse $m=50\,kg$ vers le sommet d'un plan incliné AB d'un angle $\alpha=30^\circ$ avec l'horizontale. La longueur du plan incliné est $AB=10\,m$. Les essaies effectués avec un sac de ciment pour différents distances parcourues « x » ont donné les résultats suivants :

Essais	1	2	3	4	5	6
x[en m]	0,3	0,5	0,8	1,1	1,5	2,2
$W(\vec{F})[en J]$	78,75	131,25	210	280,75	393,75	577,5

Où \vec{F} est la force motrice sur le sac de ciment et parallèle au plan incliné.

Avec le dispositif ainsi constitué, le ciment risque la déchirure lorsque la force de frottement \vec{f} est supérieure à $15\,N$.

Le cout journalier en Energie Électrique est de 700 Fcfa pour 3000 sacs de ciment.

Possibilité 2

Une poulie simple motorisée permettant de remonter les sacs de ciment à une hauteur de 5m. Le moteur consomme de l'énergie électrique donc le coût est de 75 Fcfa par kW.h (kilowattheure)

On suppose que l'énergie électrique consommée pour les $3000\,\mathrm{sacs}$ de ciment journalier est égale au travail mécanique effectuée.

Données :
$$g = 10 N.Kg^{-1}$$
 ; $1kW.h = 36 \times 10^5 J$

En exploitant les informations ci-dessous et en utilisant un raisonnement logique,

1- Examine l'utilisation du dispositif 1.

10pt

2- Aide le Directeur de la Société à faire un choix du dispositif le plus rentable.

6pt