

DEPARTEMENT DE PCT ANNEE SCOLAIRE : 2020-202				
Devoir surveillé N°1	CLASSE : T^{le} C			
Epreuve de PHYSIQUE	DUREE: 3 h	COEF : 4		
NOM	DATE: 03/10/20)		

EXAMINATEUR: FEUBI RODRIGUE

I-**EVALUATION DES RESSOURCES. / 12pts**

EXERCICE 1: Vérification des savoirs

1)	Définir :	Mesurande,	niveau	de	confiance.	dime	ension	ďi	ıne	grandeur

2) Citer en expliquant trois qualités d'un bon instrument de mesure.

3) Quelle est l'importance d'une équation aux dimensions ?

4) Question à choix multiple :

4-1 le coefficient de Student pour le niveau de 68% vaut :

- a) k = 2;
- b) k = 1;
- c) k = 3;
- d) aucune réponse juste
- 4-2 l'incertitude type pour un appareil numérique est :

- a) $u = \frac{\Delta}{\sqrt{12}}$; b) $u = \frac{t}{\sqrt{3}}$; c) $u = \frac{x\% L + n \, digit}{\sqrt{3}}$; d) $u = \frac{a}{\sqrt{12}}$

- 4-3 Qu'est-ce qu'un intervalle de confiance?
 - a). C'est un intervalle où la mesure est Juste;
 - b). C'est un intervalle où le nombre cherché a une certaine chance d'être.
 - c). Tout ce qui précède.
- 4-4 Pour calculer le champ de gravitation résultant à laction de la Terre et de la Lune en P sur le schéma ci-contre :
- a) $\vec{g}(P) = \left(\frac{G M_L}{(d-x)^2} \frac{G M_T}{d^2}\right) \vec{u}$; b) $\vec{g}(P) = \left(-\frac{G M_L}{(d-x)^2} + \frac{G M_T}{d^2}\right) \vec{u}$ c) $\vec{g}(P) = \left(\frac{G M_L}{(d-x)^2} \frac{G M_T}{x^2}\right) \vec{u}$; d) $\vec{g}(P) = \left(\frac{G M_L}{x^2} \frac{G M_T}{(d-x)^2}\right) \vec{u}$

- 4-5 Si ce point P est le point d'équigravité entre la Terre et la Lune, alors x vaut :

- a) $\frac{\sqrt{\frac{M_T}{M_L}}}{1+\sqrt{\frac{M_T}{M_L}}} \cdot d$; b) $\frac{1+\sqrt{\frac{M_T}{M_L}}}{\sqrt{\frac{M_T}{M_L}}} \cdot d$; c) $\frac{1}{1+\sqrt{\frac{M_T}{M_L}}} \cdot d$; d) aucune des trois précédentes.
- 5) Enoncer la loi de gravitation universelle.

0,25*8pts

1pt

1,5pt

1,5pt

0,75pt

1,25pt

- Recopier et compléter le tableau suivant :
 - Grandeur physique Nom de l'unité Symbole de l'unité Appareil de mesure

EXERCICE 2: Application des savoir. 8pts

- 1)- Trois billes A, B et C, assimilées à des objets ponctuels, ont respectivement pour masses $m_A = m$, $m_B = 3m$ et $m_C = 4m$, avec m = 80g. Les billes A et C sont fixées aux extrémités d'une tige rigide de longueur $\ell = 120$ cm. La bille B se déplace entre A et C. On admet que sa trajectoire reste confondue avec la ligne (AC) joignant les billes A et C.
 - 1-1 Représenter les forces de gravitation \vec{F}_A et \vec{F}_C exercées par A et C, respectivement, sur la bille B, lorsque celleci occupe le milieu M su segment [AC]. 0,5pt
 - 1-2 Au point N tel que AN = x, les forces subient par la bille B se compensent. Calculer x.

1pt

- 2)- La troisième loi de KEPLER relie la période et le rayon de la trajectoire d'une planète autour du soleil suivant la relation : $\frac{T^2}{r^3} = \frac{4\pi^2}{G M_S}$, avec G la constante gravitationnelle et M_S la masse du soleil. On donne : $G = (6,668 \pm 0,005).10^{-11}$ SI, pour la terre : $r = (1,4960 \pm 0,0003).10^{11}$ m et $T = (365,25636567 \pm 0.003).10^{-11}$ 0.00000001) iours.
 - 2-1. Déterminer la dimension et l'unité de G.

2pts

2-2. Ecrire conventionnellement la masse du soleil Ms.

2,5pts

EXERCICE 3: Utilisation des savoir. 8pts

- 1)- L'étude du mouvement d'un pendule simple montre que sa période T_P dépend de la masse m du solide, de la longueur ℓ du fil et de la valeur de g (accélérations de la pesanteur).
- 1-1. Donner les dimensions des grandeurs fondamentales évoquées dans le texte.

1pt

- 1-2. En supposant que la période du pendule s'écrit sous la forme : $T_P = cte.m^{\alpha}$. $\ell^{\beta}.g^{\gamma}$, déterminer les valeurs des inconnues α , β , γ sachant que la relation est homogène.
- 1-3. Déduire la formule de la période du pendule simple, puis calculer la calculer pour ℓ = 1m et g =9,8N/kg. 2pts
- **2)-** On réalise une série de pesée d'échantillon de masse *m* avec une balance électronique. Les résultats sont les suivants :

Essai N°	1	2	3	4	5
m(kg)	11,85	11,65	11,80	11,83	11,79

2-1 Quelle est la meilleur estimation du résultat de cette mesure ?

1pt

2-2 Calculer l'incertitude-type, l'incertitude élargie pour un niveau de confiance de 68% et l'intervalle de confiance.

II- EVALUATION DES COMPETENCES. / 16pts

Situation problème 1: Déterminer un intervalle de confiance et l'incertitude type composée. / 8pts

Dans le cadre de la lutte contre le covid-19, les thermoflashs sont utilisés à l'entrée des établissements scolaires afin de mesurer la température des élèves à une certaine distance. Le tableau ci-dessous donne les températures d'un élève, mesurées pendant un temps extrêmement court.

T °C	39	39,5	37,8	40,2	38	41,1

Certaines informations sur le thermoflash utilisé sont données sur la notice :

Précision: 1°C

Niveau confiance: 95%

Statut	Température supérieure à 38°C	Décision : Cas suspect
Statut	Température inférieure à 38°C	Décision : Cas saint

Tâche: Prononcez-vous sur le statut de cet élève.

Consigne : On tiendra compte de l'incertitude type de répétabilité et l'incertitude type liée au constructeur de l'appareil.

Situation problème 2: Forces et champ de gravitation. / 8pts

On désire déterminer la nature d'une planète du système solaire et de savoir pour quelles altitudes l'incertitude relative sur g varie de moins de 2%, pour cela, on fait voler une sonde spatiale à l'altitude z de la surface d'une planète interne du système solaire. Les résultas obtenus sont récapitulés dans le tableau ci-dessous :

	1					
Altitude z(en km)	12,5	17,5	20	25	30	35
Champ gravitationnel g (N.kg ⁻¹)	3,69	3,68	3.67	3.66	3.65	3.64

Si g_0 est la valeur du champ de gravitation à la surface de cette planète. On pourra démontrer que pour z est très petit devant R où R désigne le rayon de la planète, g est une fonction linéaire de z, en utilisant l'approximation suivante : $\epsilon \ll 1$; $(1+\epsilon)^n = 1 + n\epsilon$.

Tâche: En utilisant vos connaissances sur les notions scientifiques vues dans le cours, Aider nous à resoudre les problèmes posés.

Consignes:

- Echelle sur les axes : 1 cm pour 3 km et 1 cm pour 0,3 N/kg.
- Tableau de quelques planètes et leur champ gravitationnel :

Planètes internes	Mars	Mercure	Venus	Terre
Champ gravitationnel (N/kg)	3,72	3,78	8,61	9,80