Ministère des Enseignements Secondaires Office du Baccalauréat du Cameroun Academic College of Excellence

Examen : Baccalauréat blanc

Session: Juin 2020

Séries : D/TI

épreuve : Mathématiques

Durée: 4h Coef:4

L'épreuve comporte deux exercices et un problème étalés sur deux pages numérotées de 1 à 2.

Exercice 1 [5 Points]

On considère l'équation (E): $iz^3 + (3+3i)z^2 + (15+12i)z - 42 - 44i = 0$.

1. Justifier que (E) admet une solution réelle z_0 .

[1pt]

- 2. Déterminer trois nombres complexes a; b et c pour que $(E) \Leftrightarrow (z z_0)(az^2 + bz + c) = 0$. [0,5pt]
- 3. Déterminer les racines carrées de 72 54i.

[0,5pt]

4. Résoudre dans \mathbb{C} les équations $iz^2 + (3+5i)z + 21 + 22i = 0$ et (E).

[0,5ptX2=1pt]

- 5. On considère les points A(-4-3i); B(2); C(-1+6i) et D(-4+6i) dans le plan complexe muni d'un repère orthonornmé direct $(0; \vec{u}; \vec{v})$.
 - a) Justifier la nature du triangle ABC.

[1pt]

b) Démontrer ques les points A; B; C et D sont cocycliques et illustrer cette cocyclicité sur une figure. [1pt]

Exercice 2 [4 Points]

On considère l'application f du plan dans lui-même dont l'expression analytique est $\begin{cases} x' = 3x + y\sqrt{3} + 2\sqrt{3} \\ y' = -x\sqrt{3} + 3y + 4 \end{cases}$

1. Justifier que l'écriture complexe de f est $z' = (3 - i\sqrt{3})z + 2\sqrt{3} + 4i$.

[1pt

2. Chercher la nature et les éléments caractéristiques de f.

[1pt]

- 3. Soit (Γ) l'ensemble des points M(z) tels que : $\frac{z-4-2i}{z+2+i}$ soit imaginaire pur.
 - a) Déterminer une équation de (Γ) .

[1pt]

b) Déduire une équation de (Γ') , image de (Γ) par f.

[1pt]

PROBLEME [11 Points]

PARTIE A: [3,5 Points]

On considère les équations différentielles (E): y''+2y'+y=x-1 et (E'): y''+2y'+y=0.

1. Résoudre (E') [0,5pt]

- 2. Déterminer un polynôme P de degré un qui est solution de (E). [0,75pt]
- 3. Soit g une fonction deux fois dérivable sur \mathbb{R}
 - a) Démontrer que g est solution de (E) si et seulement si g-P est solution de (E'). [0,75pt]
 - b) Déterminer la solution générale de (E) puis celle qui admet en A(1;1) une tangente parallèle à l'axe des abscisses. $[\mathbf{0.5pt+1pt=1.5pt}]$

PARTIE B: [5,5 Points]

On considère la fonction f définie par $f(x) = (2x+1)e^{1-x} + x - 3$.

- 1. Calculer f''(x), dresser le tableau de variations de f' et démontrer que (C_f) admet un point d'inflexion dont on déterminera les coordonnées. [0,5ptX3=1,5pt]
- 2. Démontrer que l'équation f'(x)=0 admet deux solutions parmi lesquelles 1 et l'autre notée α vérifie $2,25<\alpha<2,26$
- 3. Jrustifier que $f(\alpha) = \frac{2}{2\alpha 1} + \alpha 2$ et que $0, 81 < f(\alpha) < 0, 83$ puis, dresser le tableau de variations de f. [2pts]
- 4. Tracer (C_f) dans un repère orthonormé en prenant 2cm comme unité sur les axes. [1pt]

PARTIE C: [2 Points]

On pose pour tout entier naturel non nul n, $I_n = \int_0^n (2x+1)e^{1-x}dx$.

- 1. En utilisant une intégration par parties ou en remarquant que f est une solution de l'équation différentielle (E), calculer I_n en fonction de n. [1 pt]
- 2. Calculer la limite de la suite (I_n) . [0,5pt]
- 3. Interpréter graphiquement ce résultat. [0,5pt]

Examinateur: NGUEFO Amour, PLEG mathématiques