DIOCESE DE BAFOUSSAM – SECRETARIAT A L'EDUCATION									
COLLEGE SAINT- JOSEPH DE BANDJOUN PROBATOIRE BLANC 2									
Classe:	Première	Série:	С	Année scolaire :	2019/2020				
Epreuve:	Physique	Coéf:	4	Durée :	3H				

PARTIE A: EVALUATION DES RESSOURCES (24points)

EXERCICE 1 : Vérification des savoirs (8points)

1. Définir : Alternateur, spectre discontinu ; système conservatif.

0,5*3pt

2. Quelle est la différence entre l'induction électromagnétique et l'auto-induction

1pt

3. Enoncer la loi de Joule et le théorème de vergences.

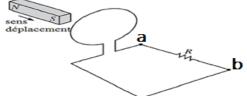
1*2pts

4. Quel est l'intérêt de l'utilisation du télescope par rapport à la lunette astronomique ?

1pt

5. Donner une allure graphique du courant alternatif. Préciser sur la courbe la période et l'amplitude.

6. Répondre par vrai ou faux : le passage d'un niveau d'énergie inférieur à un niveau d'énergie supérieur est une émission.


1,5pt

7. Choisir la bonne réponse : dans le circuit ci-contre: **0,5pt**

a) Aucun courant ne circule entre a et b;

b) Le courant circule de a vers b;

c) Le courant circule de b vers a.

EXERCICE 2: Application et utilisation des savoirs (16points)

1. Lentilles /3points

1.1.Une lentille mince L_1 , biconvexe, de vergence 5 dioptries, a deux faces de même rayon de courbure R. Schématiser une lentille biconvexe, puis calculer R sachant que l'indice du verre dans lequel la lentille a été taillée est n=1,5. 0,25+0,75=1pt

1.2.On accole à L_1 une deuxième lentille mince L_2 . Le système obtenu a pour vergence +15 δ . Calculer la distance focale de L₂ et préciser sa nature. 0,5+0,25=0,75pt

1.3.Les deux lentilles sont maintenant distantes de 30cm. L₂ est à gauche de L₁. Leurs axes principaux coïncident. Un objet AB perpendiculaire à l'axe de hauteur 1cm, est placé au foyer objet de L₂. Construire puis déterminer par calcul la position de l'image A'B' de AB donnée par le système.

Echelle: horizontal 1cm pour 5cm et vertical 1cm pour 1cm.

0,75+0,5=1,25pt

2. Instruments optiques /2,75points

Sur un microscope sont portés les indications suivantes : objectif \times 40, oculaire \times 15 et Δ = 18cm.

2.1.Donner les significations des inscriptions portées par ce microscope.

0,75pt

2.2. Calculer la distance focale de l'oculaire sachant que l'observateur est à œil normal.

0,5pt

2.3. Calculer le grossissement commercial du microscope.

0,5pt

2.4.En déduire la puissance intrinsèque de ce microscope et la distance focale de l'objectif.

0,5*2pt

3. Bilan d'énergie dans un circuit/ 4points

Un circuit électrique comporte, montés en série un générateur (E=12V; r=0,5Ω); un moteur électrique $(E'=4,5V; r'=10\Omega)$ et un résistor de résistance R=13,3 Ω .

3.1. Faire un schéma du circuit.

0,75pt

3.2.Calculer l'intensité I du courant dans le circuit.

0,5pt

3.3.Déterminer le rendement du moteur.

0,5pt

3.4.Calculer l'énergie W consommée par effet joule pendant 1h15min dans le circuit en kilojoules. 0,75pt

3.5. Etablir le diagramme des échanges des énergies dans le générateur.

0,5*3pt

4. Lumière / 1point

Une radiation a pour longueur d'onde $\lambda = 0,6 \mu m$. Déterminer l'énergie et la température correspondantes.

On donne: $C = 3 \times 10^8 \, m/s$, $h = 6,63 \times 10^{-34} \, J.s$.

0.5*2pt

5. Incertitudes /0,75point

La mesure d'une longueur a donné : $\ell = 11,76m$ avec $\Delta \ell = 0,2m$. Donner la signification de $\Delta \ell$, écrire le 0,25*3pt résultat de cette mesure et calculer sa précision.

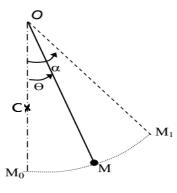
6. Quantités de chaleur/1,75point

Une bouteille contenant 1500g de glaçon d'eau à -20°C reçoit une quantité de chaleur de 197KJ. Quelle est la température finale de la bouteille ? Déterminer sa composition massique.

On donne : -Capacités thermiques massiques : eau liquide ($C_e = 4,18 \text{KJ}.\text{Kg}^{-1}.\text{K}^{-1}$), glace ($C_g = 2,1 \text{KJ}.\text{Kg}^{-1}.\text{K}^{-1}$).

-Chaleur latente : fusion de l'eau $L_f = 335KJ.Kg^{-1}.K^{-1}$

7. Energie mécanique/2,75points


Un pendule simple a pour longueur $\ell = 1m$, et pour masse m= 100g. On l'écarte de $\alpha = 40^{\circ}$ de sa position d'équilibre stable et on le laisse sans vitesse.

7.1. Que peut-on dire de l'énergie mécanique du système pendule-terre. **0,25pt**

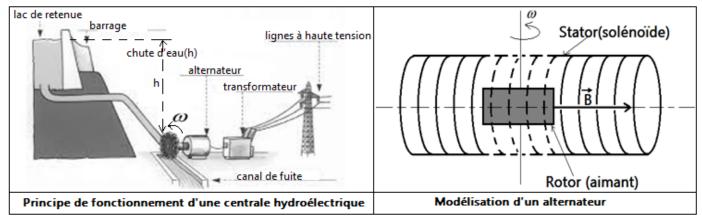
7.2. Evaluer cette énergie mécanique ; la position la plus basse de M sera prise comme origine des altitudes (g=10N/kg) **0,75pt**

7.3.En déduire la valeur de l'énergie cinétique au passage par la position d'angle $\Theta = 20^{\circ}$ 0,75pt

7.4.Le fil du pendule rencontre un clou C, situé à 50 cm en dessous du point de suspension. De quel angle α' le pendule remonte-t-il de l'autre côté de C ? **1pt**

PARTIE B: EVALUATION DES COMPETENCES (16points)

Situation-problème 1 :(6points)


Ton jeune camarade TOBI se rend à l'hôpital pour son problème de vision. Après consultation, le médecin lui donne le document ci-dessous ; qui caractérise les verres correcteurs qu'il doit acheter.

OA(m)	0,20	0,30	0,40	0,50	0,60	0,70	0,80
OA'(m)	0,200	0,150	0,133	0,125	0,120	0,116	0,114
$\frac{1}{OA}(\delta)$			2,50				1,25
$\frac{1}{OA'}(\delta)$	5,00				8,33		

<u>Tache</u>: De quelle anomalie souffre-t-il? Donne-lui la valeur exacte de sa distance minimale de vision distincte.

Situation-problème 2:(10points)

Dans les pays d'Afrique, à l'instar du Cameroun, les principales sources de courant alternatif sont les centrales hydroélectriques schématisées ci-dessous.

La chute d'eau du barrage de hauteur h permet de mettre en rotation le rotor de l'alternateur.

Ce type de centrale est utilisé pour alimenter une ville dont les besoins en électricité des populations sont satisfaites si à la sortie de l'alternateur il y a une puissance moyenne d'au-moins $4 \times 10^8 W$.

Données:

- **Barrage**: retenue d'eau de volume $V = 4.3 \times 10^6 \, m^3$ qui se vide totalement en trois jours.
- Masse volumique de l'eau : $\rho = 1.0 \times 10^3 kg / m^3$.
- **Hauteur de chute :** h = 99,7m; intensité de la pesanteur : g = 9,8N/kg.
- **Aimant :** moment d'inertie $J = 2.1 kg.m^2$, champ magnétique $B = 6.0 \times 10^{-3} T$, vitesse angulaire constante ω .
- Solénoïde : N=250 spires ayant chacune une surface $S = 5.0 \times 10^{-2} m^2$, résistance totale $R = 20\Omega$.
- Facteur de puissance : k = 0.8.

<u>Tache</u>: Prononce-toi sur la possibilité de cette centrale hydroélectrique à satisfaire les besoins en électricité des populations après trois jours.

Classe: Première								PROBATOIRE BLA										
			Série : C Physique			Année scolaire :				2019/2020								
Docum	ent à	remet	tre ave	ec la co	opie	Anor	nymat	:										
					•		•											