Ministère des Enseignements Secondaires Lycée de MOFOLE

Département de mathématiques

Test 4 : 2020-2021 Classe : TD.

Durée : 4h, Coefficient : 4

Épreuve de Mathématiques

L'épreuve est sur deux pages, deux grandes parties A et B, toutes obligatoires. La qualité de la rédaction sera prise en compte dans l'évaluation de la copie du candidat. Soyez précis et propre.

PARTIE A: ÉVALUATION DES RESSOURCES: 65 PTS

Exercice 1: 20 points

- 1. Dans le plan complexe rapporté à un repère orthonormé $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$, d'unité graphique 1cm, on considère les points A, B, C et P d'affixes respectives $z_A = \frac{3}{2} + 6i$, $z_B = \frac{3}{2} 6i$, $z_C = -3 \frac{1}{4}i$ et $z_P = 3 + 2i$ et le vecteur \overrightarrow{V} d'affixe $v = -1 + \frac{5}{2}i$.
 - (a) Trouver l'affixe z_Q du point Q image de B par la translation de vecteur \overrightarrow{V} . 1 pt
 - (b) Déterminer l'affixe z_R du point R , image du point P par l'homothétie h de centre C et de rapport $k=-\frac{1}{3}$.
 - (c) Déterminer l'affixe z_S du point S, image du point P par la rotation r de centre A et d'angle $-\frac{\pi}{2}$.
 - (d) Placer les points P, Q, R et S dans le repère. 1 pts
 - (e) Démontrer que le quadrilatère PQRS est un parallélogramme . 1,5 pt
 - (f) Calculer rapport $\frac{z_R-z_Q}{z_P-z_Q}$ et déduire la nature précise du quadrilatère PQRS .3 pts
 - (g) Montrer que les points P,Q,R et S appartiennent à un même cercle dont on précisera les éléments caractéristiques(centre et rayon) . 2 pts
- 2. On considère dans \mathbb{C} l'équation $(E): z^2-2\sqrt{3}z+4=0$ et on pose $U=\frac{1}{2}[(1-i)+\sqrt{3}(1+i)]$
 - (a) Résoudre l'équation (E) , écrire les solutions trouvées sous forme exponentielle.4 ${\bf pts}$
 - (b) Montrer que U^2 est une solution de (E) et déduire alors $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$. **4,5 pts**

Exercice 2: 12 points

On considère les intégrales suivantes : $I = \frac{1}{2} \int_0^{\pi} e^{2x} \cos^2 2x dx$ et $J = \frac{1}{3} \int_0^{\pi} e^{2x} \sin^2 2x dx$.

- 1. Montrer qu'on a : $2I + 3J = \int_0^{\pi} e^{2x} dx$ et $2I 3J = \int_0^{\pi} e^{2x} \cos 4x dx$. 2 pts
- 2. Calculer l'intégrale $I = \int_0^{\pi} e^{2x} dx$.
- 3. En utilisant une intégration par partie calculer : $\int_0^{\pi} e^{2x} cos4x dx$. 3 pts
- 4. Déduire alors les valeurs des intégrales I et J . 5 pts

Exercice 3: 15 points

On considère les équations différentielles $(E): y"-2y'+y=x^2-2$ et (E'): y"-2y'+y=0 et la fonction polynomes $\varphi(x)=ax^2+bx+c$ (avec a,b et $c\in\mathbb{R}$).

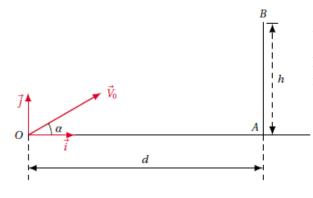
- 1. Déterminer les réels a, b et c pour que la fonction polynôme φ soit solution de (E) .4 pts
- 2. Soit g une fonction deux fois dérivable sur $\mathbb R$. Montrer que g est solution de (E) ssi $g-\varphi$ est solution de (E') . 3 pts
- 3. Résoudre (E') et déduire les solutions g de (E) . 5 **pts**
- 4. En déduire la solution g de (E) dont la courbe admet au point A(0,5) une tangente parallèle à la droite (D): y = x + 1.

Exercice 4: 21 points

Soit f la fonction définie sur \mathbb{R} par $f(x) = 1 + x - e^{-\frac{x}{2}}$ et (\mathcal{C}_f) sa courbe représentative dans le plan muni d'un repère orthonormé (O, I, J). Soit la droite (D): y = x + 1

- 1. (a) Calculer les limites de f aux bornes de son domaine de définition . 1,5 pt
 - (b) Montrer que (D) est asymptote à (C_f) ; déduire la position de (C_f) et (D). 2 pt
- 2. Étudier les variations de f et dresser le tableau de variation de f . 3 pts
- 3. Tracer dans le repère (O, I, J) la courbe (C_f) , la droite (D) (unité graphique 4cm). 4 pts
- 4. Soit $n \in \mathbb{N}^*$, on désigne par A_n l'aire, en unités d'aires, de la partie du plan limitée par la droite (D), la courbe (C_f) et les droites d'équations x = n et x = n + 1.
 - (a) Montrer que $A_n = 32(e^{-n/2} e^{-(n+1)/2})$.
 - (b) En déduire que la suite (A_n) est une suite géométrique de raison $q = \frac{1}{e^{1/2}}$ et de premier terme A_1 que l'on déterminera . 5 pts
 - (c) Exprimer $S_n = A_1 + A_2 + ... + A_n$ en fonction de n et calculer $\lim_{n \to +\infty} S_n$. 3 pts

PARTIE B: ÉVALUATION DES COMPÉTENCES: 15 PTS



ISSA et **IYA** sont deux joueurs de football élèves en classe de **Terminale D** . IlS se proposent d'étudier un **coup franc** direct en football et font les hypothèses suivantes :

- 1. Le ballon est un solide ponctuel.
- $2.\ L'influence de l'air est négligeable .$
- 3. Le champ de pésanteur est uniforme et a une intensité de g=10N/kg .

IYA pose le ballon en O sur le sol horizontale face au but \mathbf{AB} de hauteur h=2,44m et à une distance d=25m de celui-ci . ISSA , tirant le **coup franc** , communique au ballon une vitsee initiale $\overrightarrow{V_0}$ dans le plan $(O,\overrightarrow{i},\overrightarrow{j})$ incliné par rapport à l'horizontale d'un angle $\alpha=30^\circ$. Iya se rappelle néanmoins que l'équation de la trajectoire du ballon est donnée par : $y=f(x)=-\frac{g}{V_0^2cos^2\alpha}x^2+(tan\alpha)x$. La trajectoire du ballon est dans le plan $(O,\overrightarrow{i},\overrightarrow{j})$.

Taches

Tache 1 : IYA a t-il raison par rapport l'équation de la trajectoire . 5 pts

 ${\bf Tache~2~:}~{\rm Aider~les~deux~amis~\grave{a}~d\acute{e}terminer~la~hauteur~maximal~atteinte~par~le~ballon~\bf 5~pts$

Tache 3 : y'aura t-il but à l'issu du coup franc . 5 pts